MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   GIF version

Theorem 2sp 2094
Description: A double specialization (see sp 2091). Another double specialization, closer to PM*11.1, is 2stdpc4 2382. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp (∀𝑥𝑦𝜑𝜑)

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2091 . 2 (∀𝑦𝜑𝜑)
21sps 2093 1 (∀𝑥𝑦𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087
This theorem depends on definitions:  df-bi 197  df-ex 1745
This theorem is referenced by:  cbv1h  2304  csbie2t  3595  copsex2t  4986  wfrlem5  7464  fundmpss  31790  frrlem5  31909  bj-cbv1hv  32855  ax11-pm  32944  mbfresfi  33586  cotrintab  38238  pm14.123b  38944
  Copyright terms: Public domain W3C validator