![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version |
Description: A double specialization (see sp 2091). Another double specialization, closer to PM*11.1, is 2stdpc4 2382. (Contributed by BJ, 15-Sep-2018.) |
Ref | Expression |
---|---|
2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2091 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
2 | 1 | sps 2093 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: cbv1h 2304 csbie2t 3595 copsex2t 4986 wfrlem5 7464 fundmpss 31790 frrlem5 31909 bj-cbv1hv 32855 ax11-pm 32944 mbfresfi 33586 cotrintab 38238 pm14.123b 38944 |
Copyright terms: Public domain | W3C validator |