MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqblem Structured version   Visualization version   GIF version

Theorem 2sqblem 24869
Description: The converse to 2sq 24868. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sqb.1 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
2sqb.2 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
2sqb.3 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
2sqb.4 (𝜑𝐴 ∈ ℤ)
2sqb.5 (𝜑𝐵 ∈ ℤ)
2sqb.6 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
Assertion
Ref Expression
2sqblem (𝜑 → (𝑃 mod 4) = 1)

Proof of Theorem 2sqblem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2sqb.1 . . . . . 6 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
21simpld 473 . . . . 5 (𝜑𝑃 ∈ ℙ)
3 nprmdvds1 15198 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
42, 3syl 17 . . . 4 (𝜑 → ¬ 𝑃 ∥ 1)
5 prmz 15169 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
62, 5syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
7 1z 11236 . . . . 5 1 ∈ ℤ
8 dvdsnegb 14779 . . . . 5 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
96, 7, 8sylancl 692 . . . 4 (𝜑 → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
104, 9mtbid 312 . . 3 (𝜑 → ¬ 𝑃 ∥ -1)
11 2sqb.2 . . . . . 6 (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
1211simpld 473 . . . . 5 (𝜑𝑋 ∈ ℤ)
13 2sqb.5 . . . . 5 (𝜑𝐵 ∈ ℤ)
1412, 13zmulcld 11316 . . . 4 (𝜑 → (𝑋 · 𝐵) ∈ ℤ)
15 zsqcl 12747 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
1613, 15syl 17 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℤ)
17 dvdsmul1 14783 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐵↑2)))
186, 16, 17syl2anc 690 . . . . . . 7 (𝜑𝑃 ∥ (𝑃 · (𝐵↑2)))
1911simprd 477 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℤ)
2019, 13zmulcld 11316 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℤ)
21 zsqcl 12747 . . . . . . . . . . . 12 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵)↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℤ)
23 peano2zm 11249 . . . . . . . . . . 11 (((𝑌 · 𝐵)↑2) ∈ ℤ → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℤ)
2524zcnd 11311 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) ∈ ℂ)
26 zsqcl 12747 . . . . . . . . . . . 12 ((𝑋 · 𝐵) ∈ ℤ → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2714, 26syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℤ)
2827peano2zd 11313 . . . . . . . . . 10 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ)
2928zcnd 11311 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + 1) ∈ ℂ)
3025, 29addcomd 10085 . . . . . . . 8 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)))
3127zcnd 11311 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐵)↑2) ∈ ℂ)
32 ax-1cn 9846 . . . . . . . . . 10 1 ∈ ℂ
3332a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
3422zcnd 11311 . . . . . . . . 9 (𝜑 → ((𝑌 · 𝐵)↑2) ∈ ℂ)
3531, 33, 34ppncand 10279 . . . . . . . 8 (𝜑 → ((((𝑋 · 𝐵)↑2) + 1) + (((𝑌 · 𝐵)↑2) − 1)) = (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)))
36 zsqcl 12747 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℤ)
3712, 36syl 17 . . . . . . . . . . 11 (𝜑 → (𝑋↑2) ∈ ℤ)
3837zcnd 11311 . . . . . . . . . 10 (𝜑 → (𝑋↑2) ∈ ℂ)
39 zsqcl 12747 . . . . . . . . . . . 12 (𝑌 ∈ ℤ → (𝑌↑2) ∈ ℤ)
4019, 39syl 17 . . . . . . . . . . 11 (𝜑 → (𝑌↑2) ∈ ℤ)
4140zcnd 11311 . . . . . . . . . 10 (𝜑 → (𝑌↑2) ∈ ℂ)
4216zcnd 11311 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℂ)
4338, 41, 42adddird 9917 . . . . . . . . 9 (𝜑 → (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
44 2sqb.3 . . . . . . . . . 10 (𝜑𝑃 = ((𝑋↑2) + (𝑌↑2)))
4544oveq1d 6538 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐵↑2)) = (((𝑋↑2) + (𝑌↑2)) · (𝐵↑2)))
4612zcnd 11311 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
4713zcnd 11311 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
4846, 47sqmuld 12833 . . . . . . . . . 10 (𝜑 → ((𝑋 · 𝐵)↑2) = ((𝑋↑2) · (𝐵↑2)))
4919zcnd 11311 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℂ)
5049, 47sqmuld 12833 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵)↑2) = ((𝑌↑2) · (𝐵↑2)))
5148, 50oveq12d 6541 . . . . . . . . 9 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (((𝑋↑2) · (𝐵↑2)) + ((𝑌↑2) · (𝐵↑2))))
5243, 45, 513eqtr4rd 2650 . . . . . . . 8 (𝜑 → (((𝑋 · 𝐵)↑2) + ((𝑌 · 𝐵)↑2)) = (𝑃 · (𝐵↑2)))
5330, 35, 523eqtrd 2643 . . . . . . 7 (𝜑 → ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)) = (𝑃 · (𝐵↑2)))
5418, 53breqtrrd 4601 . . . . . 6 (𝜑𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1)))
55 2sqb.4 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
56 dvdsmul1 14783 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑃 ∥ (𝑃 · 𝐴))
576, 55, 56syl2anc 690 . . . . . . . . . . 11 (𝜑𝑃 ∥ (𝑃 · 𝐴))
586, 55zmulcld 11316 . . . . . . . . . . . 12 (𝜑 → (𝑃 · 𝐴) ∈ ℤ)
59 dvdsnegb 14779 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (𝑃 · 𝐴) ∈ ℤ) → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
606, 58, 59syl2anc 690 . . . . . . . . . . 11 (𝜑 → (𝑃 ∥ (𝑃 · 𝐴) ↔ 𝑃 ∥ -(𝑃 · 𝐴)))
6157, 60mpbid 220 . . . . . . . . . 10 (𝜑𝑃 ∥ -(𝑃 · 𝐴))
6220zcnd 11311 . . . . . . . . . . . 12 (𝜑 → (𝑌 · 𝐵) ∈ ℂ)
63 negsubdi2 10187 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (𝑌 · 𝐵) ∈ ℂ) → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6432, 62, 63sylancr 693 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = ((𝑌 · 𝐵) − 1))
6519zred 11310 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 ∈ ℝ)
66 absresq 13832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑌 ∈ ℝ → ((abs‘𝑌)↑2) = (𝑌↑2))
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌)↑2) = (𝑌↑2))
6865resqcld 12848 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌↑2) ∈ ℝ)
69 prmnn 15168 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
702, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑃 ∈ ℕ)
7170nnred 10878 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℝ)
7271resqcld 12848 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑃↑2) ∈ ℝ)
73 zsqcl2 12754 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋 ∈ ℤ → (𝑋↑2) ∈ ℕ0)
7412, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋↑2) ∈ ℕ0)
75 nn0addge2 11183 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑌↑2) ∈ ℝ ∧ (𝑋↑2) ∈ ℕ0) → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7668, 74, 75syl2anc 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑌↑2) ≤ ((𝑋↑2) + (𝑌↑2)))
7776, 44breqtrrd 4601 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌↑2) ≤ 𝑃)
786zcnd 11311 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑃 ∈ ℂ)
7978exp1d 12816 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑃↑1) = 𝑃)
807a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℤ)
81 2z 11238 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℤ
8281a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 2 ∈ ℤ)
83 prmuz2 15188 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
842, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃 ∈ (ℤ‘2))
85 eluz2b2 11589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
8685simprbi 478 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
8784, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 𝑃)
88 1lt2 11037 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 2
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 2)
90 ltexp2a 12725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ ℝ ∧ 1 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (1 < 𝑃 ∧ 1 < 2)) → (𝑃↑1) < (𝑃↑2))
9171, 80, 82, 87, 89, 90syl32anc 1325 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑃↑1) < (𝑃↑2))
9279, 91eqbrtrrd 4597 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 < (𝑃↑2))
9368, 71, 72, 77, 92lelttrd 10042 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑌↑2) < (𝑃↑2))
9467, 93eqbrtrd 4595 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌)↑2) < (𝑃↑2))
9549abscld 13965 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (abs‘𝑌) ∈ ℝ)
9649absge0d 13973 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ (abs‘𝑌))
9770nnnn0d 11194 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℕ0)
9897nn0ge0d 11197 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ 𝑃)
9995, 71, 96, 98lt2sqd 12856 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ((abs‘𝑌)↑2) < (𝑃↑2)))
10094, 99mpbird 245 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝑌) < 𝑃)
1016zred 11310 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℝ)
10295, 101ltnled 10031 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((abs‘𝑌) < 𝑃 ↔ ¬ 𝑃 ≤ (abs‘𝑌)))
103100, 102mpbid 220 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 𝑃 ≤ (abs‘𝑌))
104 sqnprm 15194 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 ∈ ℤ → ¬ (𝑋↑2) ∈ ℙ)
10512, 104syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ (𝑋↑2) ∈ ℙ)
10649abs00ad 13820 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑌) = 0 ↔ 𝑌 = 0))
10744, 2eqeltrrd 2684 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑋↑2) + (𝑌↑2)) ∈ ℙ)
108 sq0i 12769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑌 = 0 → (𝑌↑2) = 0)
109108oveq2d 6539 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑌 = 0 → ((𝑋↑2) + (𝑌↑2)) = ((𝑋↑2) + 0))
110109eleq1d 2667 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌 = 0 → (((𝑋↑2) + (𝑌↑2)) ∈ ℙ ↔ ((𝑋↑2) + 0) ∈ ℙ))
111107, 110syl5ibcom 233 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑌 = 0 → ((𝑋↑2) + 0) ∈ ℙ))
11238addid1d 10083 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝑋↑2) + 0) = (𝑋↑2))
113112eleq1d 2667 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝑋↑2) + 0) ∈ ℙ ↔ (𝑋↑2) ∈ ℙ))
114111, 113sylibd 227 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑌 = 0 → (𝑋↑2) ∈ ℙ))
115106, 114sylbid 228 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌) = 0 → (𝑋↑2) ∈ ℙ))
116105, 115mtod 187 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ (abs‘𝑌) = 0)
117 nn0abscl 13842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ ℤ → (abs‘𝑌) ∈ ℕ0)
11819, 117syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (abs‘𝑌) ∈ ℕ0)
119 elnn0 11137 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑌) ∈ ℕ0 ↔ ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
120118, 119sylib 206 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘𝑌) ∈ ℕ ∨ (abs‘𝑌) = 0))
121120ord 390 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (¬ (abs‘𝑌) ∈ ℕ → (abs‘𝑌) = 0))
122116, 121mt3d 138 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝑌) ∈ ℕ)
123 dvdsle 14812 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℤ ∧ (abs‘𝑌) ∈ ℕ) → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
1246, 122, 123syl2anc 690 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 ∥ (abs‘𝑌) → 𝑃 ≤ (abs‘𝑌)))
125103, 124mtod 187 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 ∥ (abs‘𝑌))
126 dvdsabsb 14781 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
1276, 19, 126syl2anc 690 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑌𝑃 ∥ (abs‘𝑌)))
128125, 127mtbird 313 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑃𝑌)
129 coprm 15203 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ 𝑌 ∈ ℤ) → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
1302, 19, 129syl2anc 690 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ 𝑃𝑌 ↔ (𝑃 gcd 𝑌) = 1))
131128, 130mpbid 220 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 gcd 𝑌) = 1)
132 2sqb.6 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
133131, 132eqtr3d 2641 . . . . . . . . . . . . . 14 (𝜑 → 1 = ((𝑃 · 𝐴) + (𝑌 · 𝐵)))
134133oveq1d 6538 . . . . . . . . . . . . 13 (𝜑 → (1 − (𝑌 · 𝐵)) = (((𝑃 · 𝐴) + (𝑌 · 𝐵)) − (𝑌 · 𝐵)))
13558zcnd 11311 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 · 𝐴) ∈ ℂ)
136135, 62pncand 10240 . . . . . . . . . . . . 13 (𝜑 → (((𝑃 · 𝐴) + (𝑌 · 𝐵)) − (𝑌 · 𝐵)) = (𝑃 · 𝐴))
137134, 136eqtrd 2639 . . . . . . . . . . . 12 (𝜑 → (1 − (𝑌 · 𝐵)) = (𝑃 · 𝐴))
138137negeqd 10122 . . . . . . . . . . 11 (𝜑 → -(1 − (𝑌 · 𝐵)) = -(𝑃 · 𝐴))
13964, 138eqtr3d 2641 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) = -(𝑃 · 𝐴))
14061, 139breqtrrd 4601 . . . . . . . . 9 (𝜑𝑃 ∥ ((𝑌 · 𝐵) − 1))
14120peano2zd 11313 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) + 1) ∈ ℤ)
142 peano2zm 11249 . . . . . . . . . . 11 ((𝑌 · 𝐵) ∈ ℤ → ((𝑌 · 𝐵) − 1) ∈ ℤ)
14320, 142syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 · 𝐵) − 1) ∈ ℤ)
144 dvdsmultr2 14801 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ((𝑌 · 𝐵) + 1) ∈ ℤ ∧ ((𝑌 · 𝐵) − 1) ∈ ℤ) → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
1456, 141, 143, 144syl3anc 1317 . . . . . . . . 9 (𝜑 → (𝑃 ∥ ((𝑌 · 𝐵) − 1) → 𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1))))
146140, 145mpd 15 . . . . . . . 8 (𝜑𝑃 ∥ (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
147 sq1 12771 . . . . . . . . . 10 (1↑2) = 1
148147oveq2i 6534 . . . . . . . . 9 (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵)↑2) − 1)
149 subsq 12785 . . . . . . . . . 10 (((𝑌 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
15062, 32, 149sylancl 692 . . . . . . . . 9 (𝜑 → (((𝑌 · 𝐵)↑2) − (1↑2)) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
151148, 150syl5eqr 2653 . . . . . . . 8 (𝜑 → (((𝑌 · 𝐵)↑2) − 1) = (((𝑌 · 𝐵) + 1) · ((𝑌 · 𝐵) − 1)))
152146, 151breqtrrd 4601 . . . . . . 7 (𝜑𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))
153 dvdsadd2b 14808 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (((𝑋 · 𝐵)↑2) + 1) ∈ ℤ ∧ ((((𝑌 · 𝐵)↑2) − 1) ∈ ℤ ∧ 𝑃 ∥ (((𝑌 · 𝐵)↑2) − 1))) → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
1546, 28, 24, 152, 153syl112anc 1321 . . . . . 6 (𝜑 → (𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1) ↔ 𝑃 ∥ ((((𝑌 · 𝐵)↑2) − 1) + (((𝑋 · 𝐵)↑2) + 1))))
15554, 154mpbird 245 . . . . 5 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) + 1))
156 subneg 10177 . . . . . 6 ((((𝑋 · 𝐵)↑2) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
15731, 32, 156sylancl 692 . . . . 5 (𝜑 → (((𝑋 · 𝐵)↑2) − -1) = (((𝑋 · 𝐵)↑2) + 1))
158155, 157breqtrrd 4601 . . . 4 (𝜑𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1))
159 oveq1 6530 . . . . . . 7 (𝑥 = (𝑋 · 𝐵) → (𝑥↑2) = ((𝑋 · 𝐵)↑2))
160159oveq1d 6538 . . . . . 6 (𝑥 = (𝑋 · 𝐵) → ((𝑥↑2) − -1) = (((𝑋 · 𝐵)↑2) − -1))
161160breq2d 4585 . . . . 5 (𝑥 = (𝑋 · 𝐵) → (𝑃 ∥ ((𝑥↑2) − -1) ↔ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)))
162161rspcev 3277 . . . 4 (((𝑋 · 𝐵) ∈ ℤ ∧ 𝑃 ∥ (((𝑋 · 𝐵)↑2) − -1)) → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
16314, 158, 162syl2anc 690 . . 3 (𝜑 → ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))
164 neg1z 11242 . . . 4 -1 ∈ ℤ
165 eldifsn 4255 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1661, 165sylibr 222 . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
167 lgsqr 24789 . . . 4 ((-1 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
168164, 166, 167sylancr 693 . . 3 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ -1 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − -1))))
16910, 163, 168mpbir2and 958 . 2 (𝜑 → (-1 /L 𝑃) = 1)
170 m1lgs 24826 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
171166, 170syl 17 . 2 (𝜑 → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1))
172169, 171mpbid 220 1 (𝜑 → (𝑃 mod 4) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1975  wne 2775  wrex 2892  cdif 3532  {csn 4120   class class class wbr 4573  cfv 5786  (class class class)co 6523  cc 9786  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793   < clt 9926  cle 9927  cmin 10113  -cneg 10114  cn 10863  2c2 10913  4c4 10915  0cn0 11135  cz 11206  cuz 11515   mod cmo 12481  cexp 12673  abscabs 13764  cdvds 14763   gcd cgcd 14996  cprime 15165   /L clgs 24732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-ofr 6769  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-ec 7604  df-qs 7608  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-fz 12149  df-fzo 12286  df-fl 12406  df-mod 12482  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-dvds 14764  df-gcd 14997  df-prm 15166  df-phi 15251  df-pc 15322  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-0g 15867  df-gsum 15868  df-prds 15873  df-pws 15875  df-imas 15933  df-qus 15934  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-mhm 17100  df-submnd 17101  df-grp 17190  df-minusg 17191  df-sbg 17192  df-mulg 17306  df-subg 17356  df-nsg 17357  df-eqg 17358  df-ghm 17423  df-cntz 17515  df-cmn 17960  df-abl 17961  df-mgp 18255  df-ur 18267  df-srg 18271  df-ring 18314  df-cring 18315  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-invr 18437  df-dvr 18448  df-rnghom 18480  df-drng 18514  df-field 18515  df-subrg 18543  df-lmod 18630  df-lss 18696  df-lsp 18735  df-sra 18935  df-rgmod 18936  df-lidl 18937  df-rsp 18938  df-2idl 18995  df-nzr 19021  df-rlreg 19046  df-domn 19047  df-idom 19048  df-assa 19075  df-asp 19076  df-ascl 19077  df-psr 19119  df-mvr 19120  df-mpl 19121  df-opsr 19123  df-evls 19269  df-evl 19270  df-psr1 19313  df-vr1 19314  df-ply1 19315  df-coe1 19316  df-evl1 19444  df-cnfld 19510  df-zring 19580  df-zrh 19612  df-zn 19615  df-mdeg 23532  df-deg1 23533  df-mon1 23607  df-uc1p 23608  df-q1p 23609  df-r1p 23610  df-lgs 24733
This theorem is referenced by:  2sqb  24870
  Copyright terms: Public domain W3C validator