MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem4 Structured version   Visualization version   GIF version

Theorem 2sqlem4 25191
Description: Lemma for 2sqlem5 25192. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem4.3 (𝜑𝐴 ∈ ℤ)
2sqlem4.4 (𝜑𝐵 ∈ ℤ)
2sqlem4.5 (𝜑𝐶 ∈ ℤ)
2sqlem4.6 (𝜑𝐷 ∈ ℤ)
2sqlem4.7 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
2sqlem4.8 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
Assertion
Ref Expression
2sqlem4 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem5.1 . . . 4 (𝜑𝑁 ∈ ℕ)
32adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
4 2sqlem5.2 . . . 4 (𝜑𝑃 ∈ ℙ)
54adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
6 2sqlem4.3 . . . 4 (𝜑𝐴 ∈ ℤ)
76adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐴 ∈ ℤ)
8 2sqlem4.4 . . . 4 (𝜑𝐵 ∈ ℤ)
98adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
10 2sqlem4.5 . . . 4 (𝜑𝐶 ∈ ℤ)
1110adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
12 2sqlem4.6 . . . 4 (𝜑𝐷 ∈ ℤ)
1312adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
14 2sqlem4.7 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
1514adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
16 2sqlem4.8 . . . 4 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
1716adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
18 simpr 476 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 25190 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁𝑆)
202adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
214adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
226znegcld 11522 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
2322adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → -𝐴 ∈ ℤ)
248adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
2510adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
2612adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
276zcnd 11521 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
28 sqneg 12963 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2927, 28syl 17 . . . . . 6 (𝜑 → (-𝐴↑2) = (𝐴↑2))
3029oveq1d 6705 . . . . 5 (𝜑 → ((-𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + (𝐵↑2)))
3114, 30eqtr4d 2688 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3231adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3316adantr 480 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
3412zcnd 11521 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
3527, 34mulneg1d 10521 . . . . . . 7 (𝜑 → (-𝐴 · 𝐷) = -(𝐴 · 𝐷))
3635oveq2d 6706 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) + -(𝐴 · 𝐷)))
3710, 8zmulcld 11526 . . . . . . . 8 (𝜑 → (𝐶 · 𝐵) ∈ ℤ)
3837zcnd 11521 . . . . . . 7 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
396, 12zmulcld 11526 . . . . . . . 8 (𝜑 → (𝐴 · 𝐷) ∈ ℤ)
4039zcnd 11521 . . . . . . 7 (𝜑 → (𝐴 · 𝐷) ∈ ℂ)
4138, 40negsubd 10436 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + -(𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4236, 41eqtrd 2685 . . . . 5 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4342breq2d 4697 . . . 4 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) ↔ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
4443biimpar 501 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)))
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 25190 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁𝑆)
46 prmz 15436 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
474, 46syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
48 zsqcl 12974 . . . . . . . 8 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
4910, 48syl 17 . . . . . . 7 (𝜑 → (𝐶↑2) ∈ ℤ)
502nnzd 11519 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
5149, 50zmulcld 11526 . . . . . 6 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℤ)
52 zsqcl 12974 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
536, 52syl 17 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℤ)
5451, 53zsubcld 11525 . . . . 5 (𝜑 → (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ)
55 dvdsmul1 15050 . . . . 5 ((𝑃 ∈ ℤ ∧ (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ) → 𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5647, 54, 55syl2anc 694 . . . 4 (𝜑𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5710, 6zmulcld 11526 . . . . . . . . 9 (𝜑 → (𝐶 · 𝐴) ∈ ℤ)
5857zcnd 11521 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
5958sqcld 13046 . . . . . . 7 (𝜑 → ((𝐶 · 𝐴)↑2) ∈ ℂ)
6038sqcld 13046 . . . . . . 7 (𝜑 → ((𝐶 · 𝐵)↑2) ∈ ℂ)
6140sqcld 13046 . . . . . . 7 (𝜑 → ((𝐴 · 𝐷)↑2) ∈ ℂ)
6259, 60, 61pnpcand 10467 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)))
6310zcnd 11521 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
6463, 27sqmuld 13060 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
658zcnd 11521 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
6663, 65sqmuld 13060 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐵)↑2) = ((𝐶↑2) · (𝐵↑2)))
6764, 66oveq12d 6708 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
6863sqcld 13046 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
6953zcnd 11521 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
7065sqcld 13046 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
7168, 69, 70adddid 10102 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
7267, 71eqtr4d 2688 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))))
732nncnd 11074 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7447zcnd 11521 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
7573, 74mulcomd 10099 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
7614, 75eqtr3d 2687 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝑃 · 𝑁))
7776oveq2d 6706 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = ((𝐶↑2) · (𝑃 · 𝑁)))
7868, 74, 73mul12d 10283 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · (𝑃 · 𝑁)) = (𝑃 · ((𝐶↑2) · 𝑁)))
7977, 78eqtrd 2685 . . . . . . . . 9 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (𝑃 · ((𝐶↑2) · 𝑁)))
8072, 79eqtrd 2685 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (𝑃 · ((𝐶↑2) · 𝑁)))
8127, 34sqmuld 13060 . . . . . . . . . . . 12 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
8234sqcld 13046 . . . . . . . . . . . . 13 (𝜑 → (𝐷↑2) ∈ ℂ)
8369, 82mulcomd 10099 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) · (𝐷↑2)) = ((𝐷↑2) · (𝐴↑2)))
8481, 83eqtrd 2685 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐷↑2) · (𝐴↑2)))
8564, 84oveq12d 6708 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8649zcnd 11521 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
8786, 82, 69adddird 10103 . . . . . . . . . 10 (𝜑 → (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8885, 87eqtr4d 2688 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
8916oveq1d 6705 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐴↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
9088, 89eqtr4d 2688 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (𝑃 · (𝐴↑2)))
9180, 90oveq12d 6708 . . . . . . 7 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9251zcnd 11521 . . . . . . . 8 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℂ)
9374, 92, 69subdid 10524 . . . . . . 7 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9491, 93eqtr4d 2688 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
9562, 94eqtr3d 2687 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
96 subsq 13012 . . . . . 6 (((𝐶 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐷) ∈ ℂ) → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9738, 40, 96syl2anc 694 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9895, 97eqtr3d 2687 . . . 4 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9956, 98breqtrd 4711 . . 3 (𝜑𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10037, 39zaddcld 11524 . . . 4 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ)
10137, 39zsubcld 11525 . . . 4 (𝜑 → ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ)
102 euclemma 15472 . . . 4 ((𝑃 ∈ ℙ ∧ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ ∧ ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ) → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
1034, 100, 101, 102syl3anc 1366 . . 3 (𝜑 → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
10499, 103mpbid 222 . 2 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10519, 45, 104mpjaodan 844 1 (𝜑𝑁𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  cc 9972   + caddc 9977   · cmul 9979  cmin 10304  -cneg 10305  cn 11058  2c2 11108  cz 11415  cexp 12900  abscabs 14018  cdvds 15027  cprime 15432  ℤ[i]cgz 15680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-gz 15681
This theorem is referenced by:  2sqlem5  25192
  Copyright terms: Public domain W3C validator