Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem6 Structured version   Visualization version   GIF version

Theorem 2sqlem6 25193
 Description: Lemma for 2sq 25200. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem6.1 (𝜑𝐴 ∈ ℕ)
2sqlem6.2 (𝜑𝐵 ∈ ℕ)
2sqlem6.3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
2sqlem6.4 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
Assertion
Ref Expression
2sqlem6 (𝜑𝐴𝑆)
Distinct variable groups:   𝑤,𝑝   𝜑,𝑝   𝐵,𝑝   𝑆,𝑝
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤,𝑝)   𝐵(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem6
Dummy variables 𝑛 𝑥 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem6.1 . 2 (𝜑𝐴 ∈ ℕ)
2 2sqlem6.2 . . 3 (𝜑𝐵 ∈ ℕ)
3 2sqlem6.3 . . 3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
4 breq2 4689 . . . . . . 7 (𝑥 = 1 → (𝑝𝑥𝑝 ∥ 1))
54imbi1d 330 . . . . . 6 (𝑥 = 1 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ 1 → 𝑝𝑆)))
65ralbidv 3015 . . . . 5 (𝑥 = 1 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆)))
7 oveq2 6698 . . . . . . . 8 (𝑥 = 1 → (𝑚 · 𝑥) = (𝑚 · 1))
87eleq1d 2715 . . . . . . 7 (𝑥 = 1 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 1) ∈ 𝑆))
98imbi1d 330 . . . . . 6 (𝑥 = 1 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
109ralbidv 3015 . . . . 5 (𝑥 = 1 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
116, 10imbi12d 333 . . . 4 (𝑥 = 1 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))))
12 breq2 4689 . . . . . . 7 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
1312imbi1d 330 . . . . . 6 (𝑥 = 𝑦 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑦𝑝𝑆)))
1413ralbidv 3015 . . . . 5 (𝑥 = 𝑦 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆)))
15 oveq2 6698 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 · 𝑥) = (𝑚 · 𝑦))
1615eleq1d 2715 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑦) ∈ 𝑆))
1716imbi1d 330 . . . . . 6 (𝑥 = 𝑦 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1817ralbidv 3015 . . . . 5 (𝑥 = 𝑦 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1914, 18imbi12d 333 . . . 4 (𝑥 = 𝑦 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆))))
20 breq2 4689 . . . . . . 7 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
2120imbi1d 330 . . . . . 6 (𝑥 = 𝑧 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑧𝑝𝑆)))
2221ralbidv 3015 . . . . 5 (𝑥 = 𝑧 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
23 oveq2 6698 . . . . . . . 8 (𝑥 = 𝑧 → (𝑚 · 𝑥) = (𝑚 · 𝑧))
2423eleq1d 2715 . . . . . . 7 (𝑥 = 𝑧 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
2524imbi1d 330 . . . . . 6 (𝑥 = 𝑧 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2625ralbidv 3015 . . . . 5 (𝑥 = 𝑧 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2722, 26imbi12d 333 . . . 4 (𝑥 = 𝑧 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
28 breq2 4689 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
2928imbi1d 330 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
3029ralbidv 3015 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
31 oveq2 6698 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑚 · 𝑥) = (𝑚 · (𝑦 · 𝑧)))
3231eleq1d 2715 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
3332imbi1d 330 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3433ralbidv 3015 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3530, 34imbi12d 333 . . . 4 (𝑥 = (𝑦 · 𝑧) → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
36 breq2 4689 . . . . . . 7 (𝑥 = 𝐵 → (𝑝𝑥𝑝𝐵))
3736imbi1d 330 . . . . . 6 (𝑥 = 𝐵 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝐵𝑝𝑆)))
3837ralbidv 3015 . . . . 5 (𝑥 = 𝐵 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆)))
39 oveq2 6698 . . . . . . . 8 (𝑥 = 𝐵 → (𝑚 · 𝑥) = (𝑚 · 𝐵))
4039eleq1d 2715 . . . . . . 7 (𝑥 = 𝐵 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝐵) ∈ 𝑆))
4140imbi1d 330 . . . . . 6 (𝑥 = 𝐵 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4241ralbidv 3015 . . . . 5 (𝑥 = 𝐵 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4338, 42imbi12d 333 . . . 4 (𝑥 = 𝐵 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))))
44 nncn 11066 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4544mulid1d 10095 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑚 · 1) = 𝑚)
4645eleq1d 2715 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4746biimpd 219 . . . . . 6 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4847rgen 2951 . . . . 5 𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)
4948a1i 11 . . . 4 (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
50 breq1 4688 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
51 eleq1 2718 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑆𝑥𝑆))
5250, 51imbi12d 333 . . . . . 6 (𝑝 = 𝑥 → ((𝑝𝑥𝑝𝑆) ↔ (𝑥𝑥𝑥𝑆)))
5352rspcv 3336 . . . . 5 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → (𝑥𝑥𝑥𝑆)))
54 prmz 15436 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
55 iddvds 15042 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥𝑥)
5654, 55syl 17 . . . . . 6 (𝑥 ∈ ℙ → 𝑥𝑥)
57 2sq.1 . . . . . . . . . 10 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
58 simprl 809 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚 ∈ ℕ)
59 simpll 805 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥 ∈ ℙ)
60 simprr 811 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → (𝑚 · 𝑥) ∈ 𝑆)
61 simplr 807 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥𝑆)
6257, 58, 59, 60, 612sqlem5 25192 . . . . . . . . 9 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚𝑆)
6362expr 642 . . . . . . . 8 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6463ralrimiva 2995 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6564ex 449 . . . . . 6 (𝑥 ∈ ℙ → (𝑥𝑆 → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6656, 65embantd 59 . . . . 5 (𝑥 ∈ ℙ → ((𝑥𝑥𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6753, 66syld 47 . . . 4 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
68 prth 594 . . . . 5 (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
69 simpr 476 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
70 eluzelz 11735 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
7170ad2antrr 762 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
72 eluzelz 11735 . . . . . . . . . . . . . . 15 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
7372ad2antlr 763 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
74 euclemma 15472 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7569, 71, 73, 74syl3anc 1366 . . . . . . . . . . . . 13 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7675imbi1d 330 . . . . . . . . . . . 12 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑧) → 𝑝𝑆)))
77 jaob 839 . . . . . . . . . . . 12 (((𝑝𝑦𝑝𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)))
7876, 77syl6bb 276 . . . . . . . . . . 11 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
7978ralbidva 3014 . . . . . . . . . 10 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
80 r19.26 3093 . . . . . . . . . 10 (∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
8179, 80syl6bb 276 . . . . . . . . 9 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆))))
8281biimpa 500 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
83 oveq1 6697 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 · 𝑦) = (𝑛 · 𝑦))
8483eleq1d 2715 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 · 𝑦) ∈ 𝑆 ↔ (𝑛 · 𝑦) ∈ 𝑆))
85 eleq1 2718 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚𝑆𝑛𝑆))
8684, 85imbi12d 333 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)))
8786cbvralv 3201 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
8844adantl 481 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
89 uzssz 11745 . . . . . . . . . . . . . . . . 17 (ℤ‘2) ⊆ ℤ
90 zsscn 11423 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℂ
9189, 90sstri 3645 . . . . . . . . . . . . . . . 16 (ℤ‘2) ⊆ ℂ
92 simpll 805 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑦 ∈ (ℤ‘2))
9392ad2antrr 762 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ (ℤ‘2))
9491, 93sseldi 3634 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℂ)
95 simplr 807 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑧 ∈ (ℤ‘2))
9695ad2antrr 762 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ (ℤ‘2))
9791, 96sseldi 3634 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℂ)
98 mul32 10241 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = ((𝑚 · 𝑧) · 𝑦))
99 mulass 10062 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = (𝑚 · (𝑦 · 𝑧)))
10098, 99eqtr3d 2687 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
10188, 94, 97, 100syl3anc 1366 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
102101eleq1d 2715 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
103 simpr 476 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104 eluz2nn 11764 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
10596, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℕ)
106103, 105nnmulcld 11106 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑧) ∈ ℕ)
107 simplr 807 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
108 oveq1 6697 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑚 · 𝑧) → (𝑛 · 𝑦) = ((𝑚 · 𝑧) · 𝑦))
109108eleq1d 2715 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → ((𝑛 · 𝑦) ∈ 𝑆 ↔ ((𝑚 · 𝑧) · 𝑦) ∈ 𝑆))
110 eleq1 2718 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → (𝑛𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
111109, 110imbi12d 333 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 · 𝑧) → (((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) ↔ (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
112111rspcv 3336 . . . . . . . . . . . . . 14 ((𝑚 · 𝑧) ∈ ℕ → (∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
113106, 107, 112sylc 65 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
114102, 113sylbird 250 . . . . . . . . . . . 12 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
115114imim1d 82 . . . . . . . . . . 11 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
116115ralimdva 2991 . . . . . . . . . 10 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11787, 116sylan2b 491 . . . . . . . . 9 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
118117expimpd 628 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → ((∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11982, 118embantd 59 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
120119ex 449 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
121120com23 86 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12268, 121syl5 34 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12311, 19, 27, 35, 43, 49, 67, 122prmind 15446 . . 3 (𝐵 ∈ ℕ → (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
1242, 3, 123sylc 65 . 2 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))
125 2sqlem6.4 . 2 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
126 oveq1 6697 . . . . 5 (𝑚 = 𝐴 → (𝑚 · 𝐵) = (𝐴 · 𝐵))
127126eleq1d 2715 . . . 4 (𝑚 = 𝐴 → ((𝑚 · 𝐵) ∈ 𝑆 ↔ (𝐴 · 𝐵) ∈ 𝑆))
128 eleq1 2718 . . . 4 (𝑚 = 𝐴 → (𝑚𝑆𝐴𝑆))
129127, 128imbi12d 333 . . 3 (𝑚 = 𝐴 → (((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) ↔ ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
130129rspcv 3336 . 2 (𝐴 ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) → ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
1311, 124, 125, 130syl3c 66 1 (𝜑𝐴𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941   class class class wbr 4685   ↦ cmpt 4762  ran crn 5144  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  1c1 9975   · cmul 9979  ℕcn 11058  2c2 11108  ℤcz 11415  ℤ≥cuz 11725  ↑cexp 12900  abscabs 14018   ∥ cdvds 15027  ℙcprime 15432  ℤ[i]cgz 15680 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-gz 15681 This theorem is referenced by:  2sqlem8  25196
 Copyright terms: Public domain W3C validator