MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem6 Structured version   Visualization version   GIF version

Theorem 2sqlem6 24892
Description: Lemma for 2sq 24899. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem6.1 (𝜑𝐴 ∈ ℕ)
2sqlem6.2 (𝜑𝐵 ∈ ℕ)
2sqlem6.3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
2sqlem6.4 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
Assertion
Ref Expression
2sqlem6 (𝜑𝐴𝑆)
Distinct variable groups:   𝑤,𝑝   𝜑,𝑝   𝐵,𝑝   𝑆,𝑝
Allowed substitution hints:   𝜑(𝑤)   𝐴(𝑤,𝑝)   𝐵(𝑤)   𝑆(𝑤)

Proof of Theorem 2sqlem6
Dummy variables 𝑛 𝑥 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem6.1 . 2 (𝜑𝐴 ∈ ℕ)
2 2sqlem6.2 . . 3 (𝜑𝐵 ∈ ℕ)
3 2sqlem6.3 . . 3 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆))
4 breq2 4581 . . . . . . 7 (𝑥 = 1 → (𝑝𝑥𝑝 ∥ 1))
54imbi1d 329 . . . . . 6 (𝑥 = 1 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ 1 → 𝑝𝑆)))
65ralbidv 2968 . . . . 5 (𝑥 = 1 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆)))
7 oveq2 6534 . . . . . . . 8 (𝑥 = 1 → (𝑚 · 𝑥) = (𝑚 · 1))
87eleq1d 2671 . . . . . . 7 (𝑥 = 1 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 1) ∈ 𝑆))
98imbi1d 329 . . . . . 6 (𝑥 = 1 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
109ralbidv 2968 . . . . 5 (𝑥 = 1 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)))
116, 10imbi12d 332 . . . 4 (𝑥 = 1 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))))
12 breq2 4581 . . . . . . 7 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
1312imbi1d 329 . . . . . 6 (𝑥 = 𝑦 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑦𝑝𝑆)))
1413ralbidv 2968 . . . . 5 (𝑥 = 𝑦 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆)))
15 oveq2 6534 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 · 𝑥) = (𝑚 · 𝑦))
1615eleq1d 2671 . . . . . . 7 (𝑥 = 𝑦 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑦) ∈ 𝑆))
1716imbi1d 329 . . . . . 6 (𝑥 = 𝑦 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1817ralbidv 2968 . . . . 5 (𝑥 = 𝑦 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)))
1914, 18imbi12d 332 . . . 4 (𝑥 = 𝑦 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆))))
20 breq2 4581 . . . . . . 7 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
2120imbi1d 329 . . . . . 6 (𝑥 = 𝑧 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝑧𝑝𝑆)))
2221ralbidv 2968 . . . . 5 (𝑥 = 𝑧 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
23 oveq2 6534 . . . . . . . 8 (𝑥 = 𝑧 → (𝑚 · 𝑥) = (𝑚 · 𝑧))
2423eleq1d 2671 . . . . . . 7 (𝑥 = 𝑧 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
2524imbi1d 329 . . . . . 6 (𝑥 = 𝑧 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2625ralbidv 2968 . . . . 5 (𝑥 = 𝑧 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)))
2722, 26imbi12d 332 . . . 4 (𝑥 = 𝑧 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
28 breq2 4581 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
2928imbi1d 329 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → ((𝑝𝑥𝑝𝑆) ↔ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
3029ralbidv 2968 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)))
31 oveq2 6534 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑚 · 𝑥) = (𝑚 · (𝑦 · 𝑧)))
3231eleq1d 2671 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
3332imbi1d 329 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3433ralbidv 2968 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
3530, 34imbi12d 332 . . . 4 (𝑥 = (𝑦 · 𝑧) → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
36 breq2 4581 . . . . . . 7 (𝑥 = 𝐵 → (𝑝𝑥𝑝𝐵))
3736imbi1d 329 . . . . . 6 (𝑥 = 𝐵 → ((𝑝𝑥𝑝𝑆) ↔ (𝑝𝐵𝑝𝑆)))
3837ralbidv 2968 . . . . 5 (𝑥 = 𝐵 → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) ↔ ∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆)))
39 oveq2 6534 . . . . . . . 8 (𝑥 = 𝐵 → (𝑚 · 𝑥) = (𝑚 · 𝐵))
4039eleq1d 2671 . . . . . . 7 (𝑥 = 𝐵 → ((𝑚 · 𝑥) ∈ 𝑆 ↔ (𝑚 · 𝐵) ∈ 𝑆))
4140imbi1d 329 . . . . . 6 (𝑥 = 𝐵 → (((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4241ralbidv 2968 . . . . 5 (𝑥 = 𝐵 → (∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆) ↔ ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
4338, 42imbi12d 332 . . . 4 (𝑥 = 𝐵 → ((∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))))
44 nncn 10877 . . . . . . . . 9 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4544mulid1d 9913 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑚 · 1) = 𝑚)
4645eleq1d 2671 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4746biimpd 217 . . . . . 6 (𝑚 ∈ ℕ → ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
4847rgen 2905 . . . . 5 𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆)
4948a1i 11 . . . 4 (∀𝑝 ∈ ℙ (𝑝 ∥ 1 → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 1) ∈ 𝑆𝑚𝑆))
50 breq1 4580 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
51 eleq1 2675 . . . . . . 7 (𝑝 = 𝑥 → (𝑝𝑆𝑥𝑆))
5250, 51imbi12d 332 . . . . . 6 (𝑝 = 𝑥 → ((𝑝𝑥𝑝𝑆) ↔ (𝑥𝑥𝑥𝑆)))
5352rspcv 3277 . . . . 5 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → (𝑥𝑥𝑥𝑆)))
54 prmz 15175 . . . . . . 7 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
55 iddvds 14781 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥𝑥)
5654, 55syl 17 . . . . . 6 (𝑥 ∈ ℙ → 𝑥𝑥)
57 2sq.1 . . . . . . . . . 10 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
58 simprl 789 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚 ∈ ℕ)
59 simpll 785 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥 ∈ ℙ)
60 simprr 791 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → (𝑚 · 𝑥) ∈ 𝑆)
61 simplr 787 . . . . . . . . . 10 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑥𝑆)
6257, 58, 59, 60, 612sqlem5 24891 . . . . . . . . 9 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ (𝑚 ∈ ℕ ∧ (𝑚 · 𝑥) ∈ 𝑆)) → 𝑚𝑆)
6362expr 640 . . . . . . . 8 (((𝑥 ∈ ℙ ∧ 𝑥𝑆) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6463ralrimiva 2948 . . . . . . 7 ((𝑥 ∈ ℙ ∧ 𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆))
6564ex 448 . . . . . 6 (𝑥 ∈ ℙ → (𝑥𝑆 → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6656, 65embantd 56 . . . . 5 (𝑥 ∈ ℙ → ((𝑥𝑥𝑥𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
6753, 66syld 45 . . . 4 (𝑥 ∈ ℙ → (∀𝑝 ∈ ℙ (𝑝𝑥𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑥) ∈ 𝑆𝑚𝑆)))
68 prth 592 . . . . 5 (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))))
69 simpr 475 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
70 eluzelz 11531 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
7170ad2antrr 757 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
72 eluzelz 11531 . . . . . . . . . . . . . . 15 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
7372ad2antlr 758 . . . . . . . . . . . . . 14 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
74 euclemma 15211 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7569, 71, 73, 74syl3anc 1317 . . . . . . . . . . . . 13 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑦 · 𝑧) ↔ (𝑝𝑦𝑝𝑧)))
7675imbi1d 329 . . . . . . . . . . . 12 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑧) → 𝑝𝑆)))
77 jaob 817 . . . . . . . . . . . 12 (((𝑝𝑦𝑝𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)))
7876, 77syl6bb 274 . . . . . . . . . . 11 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
7978ralbidva 2967 . . . . . . . . . 10 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ ∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆))))
80 r19.26 3045 . . . . . . . . . 10 (∀𝑝 ∈ ℙ ((𝑝𝑦𝑝𝑆) ∧ (𝑝𝑧𝑝𝑆)) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
8179, 80syl6bb 274 . . . . . . . . 9 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) ↔ (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆))))
8281biimpa 499 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)))
83 oveq1 6533 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 · 𝑦) = (𝑛 · 𝑦))
8483eleq1d 2671 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 · 𝑦) ∈ 𝑆 ↔ (𝑛 · 𝑦) ∈ 𝑆))
85 eleq1 2675 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚𝑆𝑛𝑆))
8684, 85imbi12d 332 . . . . . . . . . . 11 (𝑚 = 𝑛 → (((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)))
8786cbvralv 3146 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ↔ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
8844adantl 480 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
89 uzssz 11541 . . . . . . . . . . . . . . . . 17 (ℤ‘2) ⊆ ℤ
90 zsscn 11220 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℂ
9189, 90sstri 3576 . . . . . . . . . . . . . . . 16 (ℤ‘2) ⊆ ℂ
92 simpll 785 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑦 ∈ (ℤ‘2))
9392ad2antrr 757 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ (ℤ‘2))
9491, 93sseldi 3565 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℂ)
95 simplr 787 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → 𝑧 ∈ (ℤ‘2))
9695ad2antrr 757 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ (ℤ‘2))
9791, 96sseldi 3565 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℂ)
98 mul32 10054 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = ((𝑚 · 𝑧) · 𝑦))
99 mulass 9880 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑦) · 𝑧) = (𝑚 · (𝑦 · 𝑧)))
10098, 99eqtr3d 2645 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
10188, 94, 97, 100syl3anc 1317 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑧) · 𝑦) = (𝑚 · (𝑦 · 𝑧)))
102101eleq1d 2671 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 ↔ (𝑚 · (𝑦 · 𝑧)) ∈ 𝑆))
103 simpr 475 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104 eluz2nn 11560 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
10596, 104syl 17 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → 𝑧 ∈ ℕ)
106103, 105nnmulcld 10917 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑧) ∈ ℕ)
107 simplr 787 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆))
108 oveq1 6533 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑚 · 𝑧) → (𝑛 · 𝑦) = ((𝑚 · 𝑧) · 𝑦))
109108eleq1d 2671 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → ((𝑛 · 𝑦) ∈ 𝑆 ↔ ((𝑚 · 𝑧) · 𝑦) ∈ 𝑆))
110 eleq1 2675 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑚 · 𝑧) → (𝑛𝑆 ↔ (𝑚 · 𝑧) ∈ 𝑆))
111109, 110imbi12d 332 . . . . . . . . . . . . . . 15 (𝑛 = (𝑚 · 𝑧) → (((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) ↔ (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
112111rspcv 3277 . . . . . . . . . . . . . 14 ((𝑚 · 𝑧) ∈ ℕ → (∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆)))
113106, 107, 112sylc 62 . . . . . . . . . . . . 13 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) · 𝑦) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
114102, 113sylbird 248 . . . . . . . . . . . 12 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆 → (𝑚 · 𝑧) ∈ 𝑆))
115114imim1d 79 . . . . . . . . . . 11 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) ∧ 𝑚 ∈ ℕ) → (((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
116115ralimdva 2944 . . . . . . . . . 10 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑛 ∈ ℕ ((𝑛 · 𝑦) ∈ 𝑆𝑛𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11787, 116sylan2b 490 . . . . . . . . 9 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
118117expimpd 626 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → ((∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆)) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
11982, 118embantd 56 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆)))
120119ex 448 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
121120com23 83 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) ∧ ∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆)) → (∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆) ∧ ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12268, 121syl5 33 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((∀𝑝 ∈ ℙ (𝑝𝑦𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑦) ∈ 𝑆𝑚𝑆)) ∧ (∀𝑝 ∈ ℙ (𝑝𝑧𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝑧) ∈ 𝑆𝑚𝑆))) → (∀𝑝 ∈ ℙ (𝑝 ∥ (𝑦 · 𝑧) → 𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · (𝑦 · 𝑧)) ∈ 𝑆𝑚𝑆))))
12311, 19, 27, 35, 43, 49, 67, 122prmind 15185 . . 3 (𝐵 ∈ ℕ → (∀𝑝 ∈ ℙ (𝑝𝐵𝑝𝑆) → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆)))
1242, 3, 123sylc 62 . 2 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆))
125 2sqlem6.4 . 2 (𝜑 → (𝐴 · 𝐵) ∈ 𝑆)
126 oveq1 6533 . . . . 5 (𝑚 = 𝐴 → (𝑚 · 𝐵) = (𝐴 · 𝐵))
127126eleq1d 2671 . . . 4 (𝑚 = 𝐴 → ((𝑚 · 𝐵) ∈ 𝑆 ↔ (𝐴 · 𝐵) ∈ 𝑆))
128 eleq1 2675 . . . 4 (𝑚 = 𝐴 → (𝑚𝑆𝐴𝑆))
129127, 128imbi12d 332 . . 3 (𝑚 = 𝐴 → (((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) ↔ ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
130129rspcv 3277 . 2 (𝐴 ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚 · 𝐵) ∈ 𝑆𝑚𝑆) → ((𝐴 · 𝐵) ∈ 𝑆𝐴𝑆)))
1311, 124, 125, 130syl3c 63 1 (𝜑𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895   class class class wbr 4577  cmpt 4637  ran crn 5028  cfv 5789  (class class class)co 6526  cc 9790  1c1 9793   · cmul 9797  cn 10869  2c2 10919  cz 11212  cuz 11521  cexp 12679  abscabs 13770  cdvds 14769  cprime 15171  ℤ[i]cgz 15419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-fz 12155  df-fl 12412  df-mod 12488  df-seq 12621  df-exp 12680  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-dvds 14770  df-gcd 15003  df-prm 15172  df-gz 15420
This theorem is referenced by:  2sqlem8  24895
  Copyright terms: Public domain W3C validator