Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sqmo Structured version   Visualization version   GIF version

Theorem 2sqmo 29434
Description: There exists at most one decomposition of a prime as a sum of two squares. See 2sqb 25057 for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Assertion
Ref Expression
2sqmo (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqmo
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1840 . . . . . . . . . . . 12 𝑏((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0)
2 nfre1 2999 . . . . . . . . . . . 12 𝑏𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)
31, 2nfan 1825 . . . . . . . . . . 11 𝑏(((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
4 nfv 1840 . . . . . . . . . . 11 𝑏 𝑑 ∈ ℕ0
53, 4nfan 1825 . . . . . . . . . 10 𝑏((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0)
6 nfv 1840 . . . . . . . . . 10 𝑏 𝑐𝑑
75, 6nfan 1825 . . . . . . . . 9 𝑏(((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑)
8 nfv 1840 . . . . . . . . 9 𝑏((𝑐↑2) + (𝑑↑2)) = 𝑃
97, 8nfan 1825 . . . . . . . 8 𝑏((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)
10 simp-8l 813 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑃 ∈ ℙ)
11 simp-8r 814 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 ∈ ℕ0)
12 simpllr 798 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑏 ∈ ℕ0)
13 simp-7r 812 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐 ∈ ℕ0)
14 simp-6r 810 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑑 ∈ ℕ0)
15 simplr 791 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎𝑏)
16 simp-5r 808 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑐𝑑)
17 simpr 477 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑎↑2) + (𝑏↑2)) = 𝑃)
18 simp-4r 806 . . . . . . . . . . . 12 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ((𝑐↑2) + (𝑑↑2)) = 𝑃)
1910, 11, 12, 13, 14, 15, 16, 17, 182sqmod 29433 . . . . . . . . . . 11 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → (𝑎 = 𝑐𝑏 = 𝑑))
2019simpld 475 . . . . . . . . . 10 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ 𝑎𝑏) ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → 𝑎 = 𝑐)
2120anasss 678 . . . . . . . . 9 ((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
2221adantl5r 787 . . . . . . . 8 (((((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) ∧ 𝑏 ∈ ℕ0) ∧ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → 𝑎 = 𝑐)
23 simp-4r 806 . . . . . . . 8 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
249, 22, 23r19.29af 3069 . . . . . . 7 (((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑐𝑑) ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃) → 𝑎 = 𝑐)
2524anasss 678 . . . . . 6 ((((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ 𝑑 ∈ ℕ0) ∧ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2625r19.29an 3070 . . . . 5 (((((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐)
2726expl 647 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2827ralrimiva 2960 . . 3 ((𝑃 ∈ ℙ ∧ 𝑎 ∈ ℕ0) → ∀𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
2928ralrimiva 2960 . 2 (𝑃 ∈ ℙ → ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
30 breq12 4618 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎𝑏𝑐𝑑))
31 simpl 473 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑎 = 𝑐)
3231oveq1d 6619 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑎↑2) = (𝑐↑2))
33 simpr 477 . . . . . . . 8 ((𝑎 = 𝑐𝑏 = 𝑑) → 𝑏 = 𝑑)
3433oveq1d 6619 . . . . . . 7 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝑏↑2) = (𝑑↑2))
3532, 34oveq12d 6622 . . . . . 6 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎↑2) + (𝑏↑2)) = ((𝑐↑2) + (𝑑↑2)))
3635eqeq1d 2623 . . . . 5 ((𝑎 = 𝑐𝑏 = 𝑑) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑐↑2) + (𝑑↑2)) = 𝑃))
3730, 36anbi12d 746 . . . 4 ((𝑎 = 𝑐𝑏 = 𝑑) → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3837cbvrexdva 3166 . . 3 (𝑎 = 𝑐 → (∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)))
3938rmo4 3381 . 2 (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∀𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ((∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃𝑑 ∈ ℕ0 (𝑐𝑑 ∧ ((𝑐↑2) + (𝑑↑2)) = 𝑃)) → 𝑎 = 𝑐))
4029, 39sylibr 224 1 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  ∃*wrmo 2910   class class class wbr 4613  (class class class)co 6604   + caddc 9883  cle 10019  2c2 11014  0cn0 11236  cexp 12800  cprime 15309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-prm 15310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator