MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2strop1 Structured version   Visualization version   GIF version

Theorem 2strop1 15916
Description: The other slot of a constructed two-slot structure. Version of 2strop 15913 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.)
Hypotheses
Ref Expression
2str1.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2str1.b (Base‘ndx) < 𝑁
2str1.n 𝑁 ∈ ℕ
2str1.e 𝐸 = Slot 𝑁
Assertion
Ref Expression
2strop1 ( +𝑉+ = (𝐸𝐺))

Proof of Theorem 2strop1
StepHypRef Expression
1 2str1.g . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2 2str1.b . . 3 (Base‘ndx) < 𝑁
3 2str1.n . . 3 𝑁 ∈ ℕ
41, 2, 32strstr1 15914 . 2 𝐺 Struct ⟨(Base‘ndx), 𝑁
5 2str1.e . . 3 𝐸 = Slot 𝑁
65, 3ndxid 15812 . 2 𝐸 = Slot (𝐸‘ndx)
7 snsspr2 4319 . . 3 {⟨𝑁, + ⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
85, 3ndxarg 15811 . . . . 5 (𝐸‘ndx) = 𝑁
98opeq1i 4378 . . . 4 ⟨(𝐸‘ndx), + ⟩ = ⟨𝑁, +
109sneqi 4164 . . 3 {⟨(𝐸‘ndx), + ⟩} = {⟨𝑁, + ⟩}
117, 10, 13sstr4i 3628 . 2 {⟨(𝐸‘ndx), + ⟩} ⊆ 𝐺
124, 6, 11strfv 15835 1 ( +𝑉+ = (𝐸𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {csn 4153  {cpr 4155  cop 4159   class class class wbr 4618  cfv 5852   < clt 10025  cn 10971  ndxcnx 15785  Slot cslot 15787  Basecbs 15788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-n0 11244  df-z 11329  df-uz 11639  df-fz 12276  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator