MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkdlem4 Structured version   Visualization version   GIF version

Theorem 2wlkdlem4 27701
Description: Lemma 4 for 2wlkd 27709. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
Assertion
Ref Expression
2wlkdlem4 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐽(𝑘)   𝐾(𝑘)

Proof of Theorem 2wlkdlem4
StepHypRef Expression
1 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2 2wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶”⟩
3 2wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
42, 3, 12wlkdlem3 27700 . . . 4 (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
5 simp1 1132 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) = 𝐴)
65eleq1d 2897 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘0) ∈ 𝑉𝐴𝑉))
7 simp2 1133 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵)
87eleq1d 2897 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘1) ∈ 𝑉𝐵𝑉))
9 simp3 1134 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
109eleq1d 2897 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ∈ 𝑉𝐶𝑉))
116, 8, 103anbi123d 1432 . . . . 5 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉) ↔ (𝐴𝑉𝐵𝑉𝐶𝑉)))
1211bicomd 225 . . . 4 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
134, 12syl 17 . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
141, 13mpbid 234 . 2 (𝜑 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
153fveq2i 6667 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
16 s2len 14245 . . . . . . 7 (♯‘⟨“𝐽𝐾”⟩) = 2
1715, 16eqtri 2844 . . . . . 6 (♯‘𝐹) = 2
1817oveq2i 7161 . . . . 5 (0...(♯‘𝐹)) = (0...2)
19 fz0tp 13002 . . . . 5 (0...2) = {0, 1, 2}
2018, 19eqtri 2844 . . . 4 (0...(♯‘𝐹)) = {0, 1, 2}
2120raleqi 3413 . . 3 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ∈ 𝑉)
22 c0ex 10629 . . . 4 0 ∈ V
23 1ex 10631 . . . 4 1 ∈ V
24 2ex 11708 . . . 4 2 ∈ V
25 fveq2 6664 . . . . 5 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2625eleq1d 2897 . . . 4 (𝑘 = 0 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉))
27 fveq2 6664 . . . . 5 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
2827eleq1d 2897 . . . 4 (𝑘 = 1 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉))
29 fveq2 6664 . . . . 5 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
3029eleq1d 2897 . . . 4 (𝑘 = 2 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉))
3122, 23, 24, 26, 28, 30raltp 4634 . . 3 (∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
3221, 31bitri 277 . 2 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
3314, 32sylibr 236 1 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {ctp 4564  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532  2c2 11686  ...cfz 12886  chash 13684  ⟨“cs2 14197  ⟨“cs3 14198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205
This theorem is referenced by:  2wlkd  27709
  Copyright terms: Public domain W3C validator