![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2wlkdlem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for 2wlkd 27056. (Contributed by AV, 14-Feb-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
Ref | Expression |
---|---|
2wlkdlem5 | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
2 | 2wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
3 | 2wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
4 | 2wlkd.s | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
5 | 2, 3, 4 | 2wlkdlem3 27047 | . . . 4 ⊢ (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) |
6 | simp1 1131 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) = 𝐴) | |
7 | simp2 1132 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵) | |
8 | 6, 7 | neeq12d 2993 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴 ≠ 𝐵)) |
9 | simp3 1133 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶) | |
10 | 7, 9 | neeq12d 2993 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵 ≠ 𝐶)) |
11 | 8, 10 | anbi12d 749 | . . . . 5 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)) ↔ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶))) |
12 | 11 | bicomd 213 | . . . 4 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))) |
13 | 5, 12 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2)))) |
14 | 1, 13 | mpbid 222 | . 2 ⊢ (𝜑 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
15 | 2, 3 | 2wlkdlem2 27046 | . . . 4 ⊢ (0..^(♯‘𝐹)) = {0, 1} |
16 | 15 | raleqi 3281 | . . 3 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
17 | c0ex 10226 | . . . 4 ⊢ 0 ∈ V | |
18 | 1ex 10227 | . . . 4 ⊢ 1 ∈ V | |
19 | fveq2 6352 | . . . . 5 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
20 | oveq1 6820 | . . . . . . 7 ⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) | |
21 | 0p1e1 11324 | . . . . . . 7 ⊢ (0 + 1) = 1 | |
22 | 20, 21 | syl6eq 2810 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
23 | 22 | fveq2d 6356 | . . . . 5 ⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
24 | 19, 23 | neeq12d 2993 | . . . 4 ⊢ (𝑘 = 0 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
25 | fveq2 6352 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
26 | oveq1 6820 | . . . . . . 7 ⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) | |
27 | 1p1e2 11326 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
28 | 26, 27 | syl6eq 2810 | . . . . . 6 ⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
29 | 28 | fveq2d 6356 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
30 | 25, 29 | neeq12d 2993 | . . . 4 ⊢ (𝑘 = 1 → ((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘1) ≠ (𝑃‘2))) |
31 | 17, 18, 24, 30 | ralpr 4382 | . . 3 ⊢ (∀𝑘 ∈ {0, 1} (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
32 | 16, 31 | bitri 264 | . 2 ⊢ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2))) |
33 | 14, 32 | sylibr 224 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 {cpr 4323 ‘cfv 6049 (class class class)co 6813 0cc0 10128 1c1 10129 + caddc 10131 2c2 11262 ..^cfzo 12659 ♯chash 13311 〈“cs2 13786 〈“cs3 13787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 df-concat 13487 df-s1 13488 df-s2 13793 df-s3 13794 |
This theorem is referenced by: 2wlkd 27056 |
Copyright terms: Public domain | W3C validator |