![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2wlkond | Structured version Visualization version GIF version |
Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 30-Jan-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
2wlkond | ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 2wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | 2wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
8 | 1, 2, 3, 4, 5, 6, 7 | 2wlkd 26901 | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
9 | 3 | simp1d 1093 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
10 | 1 | fveq1i 6230 | . . . 4 ⊢ (𝑃‘0) = (〈“𝐴𝐵𝐶”〉‘0) |
11 | s3fv0 13682 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | |
12 | 10, 11 | syl5eq 2697 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑃‘0) = 𝐴) |
13 | 9, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑃‘0) = 𝐴) |
14 | 2 | fveq2i 6232 | . . . . 5 ⊢ (#‘𝐹) = (#‘〈“𝐽𝐾”〉) |
15 | s2len 13680 | . . . . 5 ⊢ (#‘〈“𝐽𝐾”〉) = 2 | |
16 | 14, 15 | eqtri 2673 | . . . 4 ⊢ (#‘𝐹) = 2 |
17 | 1, 16 | fveq12i 6234 | . . 3 ⊢ (𝑃‘(#‘𝐹)) = (〈“𝐴𝐵𝐶”〉‘2) |
18 | 3 | simp3d 1095 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
19 | s3fv2 13684 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
21 | 17, 20 | syl5eq 2697 | . 2 ⊢ (𝜑 → (𝑃‘(#‘𝐹)) = 𝐶) |
22 | 3simpb 1079 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
23 | 3, 22 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
24 | s2cli 13671 | . . . . 5 ⊢ 〈“𝐽𝐾”〉 ∈ Word V | |
25 | 2, 24 | eqeltri 2726 | . . . 4 ⊢ 𝐹 ∈ Word V |
26 | s3cli 13672 | . . . . 5 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
27 | 1, 26 | eqeltri 2726 | . . . 4 ⊢ 𝑃 ∈ Word V |
28 | 25, 27 | pm3.2i 470 | . . 3 ⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) |
29 | 6 | iswlkon 26609 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶))) |
30 | 23, 28, 29 | sylancl 695 | . 2 ⊢ (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐶))) |
31 | 8, 13, 21, 30 | mpbir3and 1264 | 1 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ⊆ wss 3607 {cpr 4212 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 0cc0 9974 2c2 11108 #chash 13157 Word cword 13323 〈“cs2 13632 〈“cs3 13633 Vtxcvtx 25919 iEdgciedg 25920 Walkscwlks 26548 WalksOncwlkson 26549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-s2 13639 df-s3 13640 df-wlks 26551 df-wlkson 26552 |
This theorem is referenced by: 2trlond 26904 umgr2adedgwlkon 26911 |
Copyright terms: Public domain | W3C validator |