Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngamgm Structured version   Visualization version   GIF version

Theorem 2zrngamgm 41243
Description: R is an (additive) magma. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngamgm 𝑅 ∈ Mgm
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zrngamgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2625 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3045 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3349 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2625 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3045 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3349 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 oveq2 6615 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
98eqeq2d 2631 . . . . . . . 8 (𝑥 = 𝑦 → (𝑎 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑦)))
109cbvrexv 3160 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))
11 zaddcl 11364 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1211ancoms 469 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1312adantr 481 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ ℤ)
14 simpl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℤ)
15 simpl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℤ)
16 zaddcl 11364 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 + 𝑥) ∈ ℤ)
1714, 15, 16syl2anr 495 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑦 + 𝑥) ∈ ℤ)
1817adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑦 + 𝑥) ∈ ℤ)
19 oveq2 6615 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑦 + 𝑥) → (2 · 𝑧) = (2 · (𝑦 + 𝑥)))
2019eqeq2d 2631 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑦 + 𝑥) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
2120adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) ∧ 𝑧 = (𝑦 + 𝑥)) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
22 eqidd 2622 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥)))
2318, 21, 22rspcedvd 3302 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧))
24 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑎 = (2 · 𝑦))
25 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑏 = (2 · 𝑥))
2624, 25oveqan12rd 6627 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
2726adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
28 2cnd 11040 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 2 ∈ ℂ)
29 zcn 11329 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3029adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℂ)
3130adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑦 ∈ ℂ)
32 zcn 11329 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3332adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℂ)
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑥 ∈ ℂ)
3528, 31, 34adddid 10011 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3635adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3727, 36eqtr4d 2658 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = (2 · (𝑦 + 𝑥)))
3837eqeq1d 2623 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ((𝑎 + 𝑏) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
3938rexbidv 3045 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧) ↔ ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
4023, 39mpbird 247 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4140ex 450 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
4241rexlimdvaa 3025 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4342rexlimiva 3021 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4443imp 445 . . . . . . . . . . . . 13 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
45 oveq2 6615 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
4645eqeq2d 2631 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑎 + 𝑏) = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑧)))
4746cbvrexv 3160 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4844, 47syl6ibr 242 . . . . . . . . . . . 12 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
4948impcom 446 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥))
50 eqeq1 2625 . . . . . . . . . . . . 13 (𝑧 = (𝑎 + 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑥)))
5150rexbidv 3045 . . . . . . . . . . . 12 (𝑧 = (𝑎 + 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5251, 3elrab2 3349 . . . . . . . . . . 11 ((𝑎 + 𝑏) ∈ 𝐸 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5313, 49, 52sylanbrc 697 . . . . . . . . . 10 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ 𝐸)
5453exp32 630 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5554impancom 456 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5655com13 88 . . . . . . 7 (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5710, 56sylbi 207 . . . . . 6 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5857impcom 446 . . . . 5 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸))
5958imp 445 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 + 𝑏) ∈ 𝐸)
604, 7, 59syl2anb 496 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 + 𝑏) ∈ 𝐸)
6160rgen2a 2971 . 2 𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸
62 0z 11335 . . . . 5 0 ∈ ℤ
63 2cn 11038 . . . . . 6 2 ∈ ℂ
64 0zd 11336 . . . . . . 7 (2 ∈ ℂ → 0 ∈ ℤ)
65 oveq2 6615 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
6665eqeq2d 2631 . . . . . . . 8 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
6766adantl 482 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
68 mul01 10162 . . . . . . . 8 (2 ∈ ℂ → (2 · 0) = 0)
6968eqcomd 2627 . . . . . . 7 (2 ∈ ℂ → 0 = (2 · 0))
7064, 67, 69rspcedvd 3302 . . . . . 6 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
7163, 70ax-mp 5 . . . . 5 𝑥 ∈ ℤ 0 = (2 · 𝑥)
72 eqeq1 2625 . . . . . . 7 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
7372rexbidv 3045 . . . . . 6 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7473elrab 3347 . . . . 5 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7562, 71, 74mpbir2an 954 . . . 4 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
7675, 3eleqtrri 2697 . . 3 0 ∈ 𝐸
77 2zrngbas.r . . . . 5 𝑅 = (ℂflds 𝐸)
783, 772zrngbas 41240 . . . 4 𝐸 = (Base‘𝑅)
793, 772zrngadd 41241 . . . 4 + = (+g𝑅)
8078, 79ismgmn0 17168 . . 3 (0 ∈ 𝐸 → (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸))
8176, 80ax-mp 5 . 2 (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸)
8261, 81mpbir 221 1 𝑅 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  (class class class)co 6607  cc 9881  0cc0 9883   + caddc 9886   · cmul 9888  2c2 11017  cz 11324  s cress 15785  Mgmcmgm 17164  fldccnfld 19668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-addf 9962
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-fz 12272  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-mgm 17166  df-cnfld 19669
This theorem is referenced by:  2zrngasgrp  41244
  Copyright terms: Public domain W3C validator