Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngamgm Structured version   Visualization version   GIF version

Theorem 2zrngamgm 44217
Description: R is an (additive) magma. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
Assertion
Ref Expression
2zrngamgm 𝑅 ∈ Mgm
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑧)   𝐸(𝑥,𝑧)

Proof of Theorem 2zrngamgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2827 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3299 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3685 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2827 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3299 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3685 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 oveq2 7166 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
98eqeq2d 2834 . . . . . . . 8 (𝑥 = 𝑦 → (𝑎 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑦)))
109cbvrexvw 3452 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))
11 zaddcl 12025 . . . . . . . . . . . . 13 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1211ancoms 461 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ)
1312adantr 483 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ ℤ)
14 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℤ)
15 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℤ)
16 zaddcl 12025 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 + 𝑥) ∈ ℤ)
1714, 15, 16syl2anr 598 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑦 + 𝑥) ∈ ℤ)
1817adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑦 + 𝑥) ∈ ℤ)
19 oveq2 7166 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑦 + 𝑥) → (2 · 𝑧) = (2 · (𝑦 + 𝑥)))
2019eqeq2d 2834 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑦 + 𝑥) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
2120adantl 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) ∧ 𝑧 = (𝑦 + 𝑥)) → ((2 · (𝑦 + 𝑥)) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥))))
22 eqidd 2824 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = (2 · (𝑦 + 𝑥)))
2318, 21, 22rspcedvd 3628 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧))
24 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑎 = (2 · 𝑦))
25 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑏 = (2 · 𝑥))
2624, 25oveqan12rd 7178 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
2726adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = ((2 · 𝑦) + (2 · 𝑥)))
28 2cnd 11718 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 2 ∈ ℂ)
29 zcn 11989 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3029adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦)) → 𝑦 ∈ ℂ)
3130adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑦 ∈ ℂ)
32 zcn 11989 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3332adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → 𝑥 ∈ ℂ)
3433adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → 𝑥 ∈ ℂ)
3528, 31, 34adddid 10667 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3635adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (2 · (𝑦 + 𝑥)) = ((2 · 𝑦) + (2 · 𝑥)))
3727, 36eqtr4d 2861 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (𝑎 + 𝑏) = (2 · (𝑦 + 𝑥)))
3837eqeq1d 2825 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ((𝑎 + 𝑏) = (2 · 𝑧) ↔ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
3938rexbidv 3299 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → (∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧) ↔ ∃𝑧 ∈ ℤ (2 · (𝑦 + 𝑥)) = (2 · 𝑧)))
4023, 39mpbird 259 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) ∧ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ)) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4140ex 415 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) ∧ (𝑦 ∈ ℤ ∧ 𝑎 = (2 · 𝑦))) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
4241rexlimdvaa 3287 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑏 = (2 · 𝑥)) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4342rexlimiva 3283 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))))
4443imp 409 . . . . . . . . . . . . 13 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧)))
45 oveq2 7166 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (2 · 𝑥) = (2 · 𝑧))
4645eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑎 + 𝑏) = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑧)))
4746cbvrexvw 3452 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥) ↔ ∃𝑧 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑧))
4844, 47syl6ibr 254 . . . . . . . . . . . 12 ((∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦)) → ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
4948impcom 410 . . . . . . . . . . 11 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥))
50 eqeq1 2827 . . . . . . . . . . . . 13 (𝑧 = (𝑎 + 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 + 𝑏) = (2 · 𝑥)))
5150rexbidv 3299 . . . . . . . . . . . 12 (𝑧 = (𝑎 + 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5251, 3elrab2 3685 . . . . . . . . . . 11 ((𝑎 + 𝑏) ∈ 𝐸 ↔ ((𝑎 + 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 + 𝑏) = (2 · 𝑥)))
5313, 49, 52sylanbrc 585 . . . . . . . . . 10 (((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) ∧ ∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦))) → (𝑎 + 𝑏) ∈ 𝐸)
5453exp32 423 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥) → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5554impancom 454 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 + 𝑏) ∈ 𝐸)))
5655com13 88 . . . . . . 7 (∃𝑦 ∈ ℤ 𝑎 = (2 · 𝑦) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5710, 56sylbi 219 . . . . . 6 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸)))
5857impcom 410 . . . . 5 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → (𝑎 + 𝑏) ∈ 𝐸))
5958imp 409 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 + 𝑏) ∈ 𝐸)
604, 7, 59syl2anb 599 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 + 𝑏) ∈ 𝐸)
6160rgen2 3205 . 2 𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸
62 0z 11995 . . . . 5 0 ∈ ℤ
63 2cn 11715 . . . . . 6 2 ∈ ℂ
64 0zd 11996 . . . . . . 7 (2 ∈ ℂ → 0 ∈ ℤ)
65 oveq2 7166 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
6665eqeq2d 2834 . . . . . . . 8 (𝑥 = 0 → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
6766adantl 484 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑥 = 0) → (0 = (2 · 𝑥) ↔ 0 = (2 · 0)))
68 mul01 10821 . . . . . . . 8 (2 ∈ ℂ → (2 · 0) = 0)
6968eqcomd 2829 . . . . . . 7 (2 ∈ ℂ → 0 = (2 · 0))
7064, 67, 69rspcedvd 3628 . . . . . 6 (2 ∈ ℂ → ∃𝑥 ∈ ℤ 0 = (2 · 𝑥))
7163, 70ax-mp 5 . . . . 5 𝑥 ∈ ℤ 0 = (2 · 𝑥)
72 eqeq1 2827 . . . . . . 7 (𝑧 = 0 → (𝑧 = (2 · 𝑥) ↔ 0 = (2 · 𝑥)))
7372rexbidv 3299 . . . . . 6 (𝑧 = 0 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7473elrab 3682 . . . . 5 (0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ↔ (0 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 0 = (2 · 𝑥)))
7562, 71, 74mpbir2an 709 . . . 4 0 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
7675, 3eleqtrri 2914 . . 3 0 ∈ 𝐸
77 2zrngbas.r . . . . 5 𝑅 = (ℂflds 𝐸)
783, 772zrngbas 44214 . . . 4 𝐸 = (Base‘𝑅)
793, 772zrngadd 44215 . . . 4 + = (+g𝑅)
8078, 79ismgmn0 17856 . . 3 (0 ∈ 𝐸 → (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸))
8176, 80ax-mp 5 . 2 (𝑅 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 + 𝑏) ∈ 𝐸)
8261, 81mpbir 233 1 𝑅 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  (class class class)co 7158  cc 10537  0cc0 10539   + caddc 10542   · cmul 10544  2c2 11695  cz 11984  s cress 16486  Mgmcmgm 17852  fldccnfld 20547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-addf 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-mgm 17854  df-cnfld 20548
This theorem is referenced by:  2zrngasgrp  44218
  Copyright terms: Public domain W3C validator