Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngmmgm Structured version   Visualization version   GIF version

Theorem 2zrngmmgm 41260
Description: R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngmmgm 𝑀 ∈ Mgm
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngmmgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2625 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3046 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3352 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2625 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3046 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3352 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 zmulcl 11378 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
98ad2ant2r 782 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ ℤ)
10 nfv 1840 . . . . . . . . 9 𝑥 𝑎 ∈ ℤ
11 nfv 1840 . . . . . . . . . . 11 𝑥 𝑏 ∈ ℤ
12 nfre1 3000 . . . . . . . . . . 11 𝑥𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)
1311, 12nfan 1825 . . . . . . . . . 10 𝑥(𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))
14 nfv 1840 . . . . . . . . . 10 𝑥𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)
1513, 14nfim 1822 . . . . . . . . 9 𝑥((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
1610, 15nfim 1822 . . . . . . . 8 𝑥(𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
17 simpll 789 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) → 𝑥 ∈ ℤ)
18 simpl 473 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℤ)
19 zmulcl 11378 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑥 · 𝑏) ∈ ℤ)
2017, 18, 19syl2an 494 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑥 · 𝑏) ∈ ℤ)
21 oveq2 6618 . . . . . . . . . . . 12 (𝑦 = (𝑥 · 𝑏) → (2 · 𝑦) = (2 · (𝑥 · 𝑏)))
2221eqeq2d 2631 . . . . . . . . . . 11 (𝑦 = (𝑥 · 𝑏) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
2322adantl 482 . . . . . . . . . 10 (((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) ∧ 𝑦 = (𝑥 · 𝑏)) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
24 oveq1 6617 . . . . . . . . . . . 12 (𝑎 = (2 · 𝑥) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
2524ad3antlr 766 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
26 2cnd 11045 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 2 ∈ ℂ)
27 zcn 11334 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2827ad3antrrr 765 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑥 ∈ ℂ)
29 zcn 11334 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3029adantr 481 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
3130adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑏 ∈ ℂ)
3226, 28, 31mulassd 10015 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ((2 · 𝑥) · 𝑏) = (2 · (𝑥 · 𝑏)))
3325, 32eqtrd 2655 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏)))
3420, 23, 33rspcedvd 3305 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
3534exp41 637 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))))
3616, 35rexlimi 3018 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))))
3736impcom 446 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
3837imp 445 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
39 eqeq1 2625 . . . . . . . 8 (𝑧 = (𝑎 · 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑥)))
4039rexbidv 3046 . . . . . . 7 (𝑧 = (𝑎 · 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
4140, 3elrab2 3352 . . . . . 6 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
42 oveq2 6618 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4342eqeq2d 2631 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑎 · 𝑏) = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑦)))
4443cbvrexv 3163 . . . . . . 7 (∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
4544anbi2i 729 . . . . . 6 (((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)) ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
4641, 45bitri 264 . . . . 5 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
479, 38, 46sylanbrc 697 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ 𝐸)
484, 7, 47syl2anb 496 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 · 𝑏) ∈ 𝐸)
4948rgen2a 2972 . 2 𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸
5030even 41245 . . 3 0 ∈ 𝐸
51 2zrngmmgm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
52 2zrngbas.r . . . . . 6 𝑅 = (ℂflds 𝐸)
533, 522zrngbas 41250 . . . . 5 𝐸 = (Base‘𝑅)
5451, 53mgpbas 18427 . . . 4 𝐸 = (Base‘𝑀)
553, 522zrngmul 41259 . . . . 5 · = (.r𝑅)
5651, 55mgpplusg 18425 . . . 4 · = (+g𝑀)
5754, 56ismgmn0 17176 . . 3 (0 ∈ 𝐸 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸))
5850, 57ax-mp 5 . 2 (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸)
5949, 58mpbir 221 1 𝑀 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  cfv 5852  (class class class)co 6610  cc 9886  0cc0 9888   · cmul 9893  2c2 11022  cz 11329  s cress 15793  Mgmcmgm 17172  mulGrpcmgp 18421  fldccnfld 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-mgm 17174  df-mgp 18422  df-cnfld 19679
This theorem is referenced by:  2zrngmsgrp  41261
  Copyright terms: Public domain W3C validator