![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantl1 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl1 | ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1080 | . 2 ⊢ ((𝜏 ∧ 𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 487 | 1 ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: 3ad2antl2 1244 3ad2antl3 1245 funcnvqp 5990 onfununi 7483 omord2 7692 en2eqpr 8868 divmuldiv 10763 ioojoin 12341 expnlbnd 13034 swrdlend 13477 lcmledvds 15359 pospropd 17181 marrepcl 20418 gsummatr01lem3 20511 upxp 21474 rnelfmlem 21803 brbtwn2 25830 spthonepeq 26704 fh2 28606 homulass 28789 hoadddi 28790 hoadddir 28791 metf1o 33681 rngohomco 33903 rngoisoco 33911 op01dm 34788 paddss12 35423 wessf1ornlem 39685 elaa2 40769 smflimlem2 41301 |
Copyright terms: Public domain | W3C validator |