![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anidm13 | Structured version Visualization version GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
Ref | Expression |
---|---|
3anidm13.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
3anidm13 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm13.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) | |
2 | 1 | 3com23 1291 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) |
3 | 2 | 3anidm12 1423 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: npncan2 10346 ltsubpos 10558 leaddle0 10581 subge02 10582 halfaddsub 11303 avglt1 11308 hashssdif 13238 pythagtriplem4 15571 pythagtriplem14 15580 lsmss2 18127 grpoidinvlem2 27487 hvpncan3 28027 bcm1n 29682 3anidm12p1 39350 3impcombi 39361 |
Copyright terms: Public domain | W3C validator |