MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim2i Structured version   Visualization version   GIF version

Theorem 3anim2i 1268
Description: Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim2i ((𝜒𝜑𝜃) → (𝜒𝜓𝜃))

Proof of Theorem 3anim2i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 3animi.1 . 2 (𝜑𝜓)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1266 1 ((𝜒𝜑𝜃) → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1056
This theorem is referenced by:  elfzo0z  12549  swrdfv0  13470  mdetunilem9  20474  chpdmat  20694  subgrprop2  26211  welb  33661  lincreslvec3  42596
  Copyright terms: Public domain W3C validator