Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anrev Structured version   Visualization version   GIF version

Theorem 3anrev 1091
 Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3anrev ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))

Proof of Theorem 3anrev
StepHypRef Expression
1 3ancoma 1084 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
2 3anrot 1087 . 2 ((𝜒𝜓𝜑) ↔ (𝜓𝜑𝜒))
31, 2bitr4i 267 1 ((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ w3a 1072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074 This theorem is referenced by:  3com13OLD  1431  an33rean  1587  nnmcan  7875  odupos  17328  wwlks2onsym  27071  frgr3v  27421  bnj345  31081  bnj1098  31153  pocnv  31952  btwnswapid2  32423  colinbtwnle  32523  uunT11p2  39519  uunT12p5  39525  uun2221p2  39536
 Copyright terms: Public domain W3C validator