Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3at Structured version   Visualization version   GIF version

Theorem 3at 35094
 Description: Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 35081 for lines and 4at 35217 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3at (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))

Proof of Theorem 3at
StepHypRef Expression
1 3at.l . . . 4 = (le‘𝐾)
2 3at.j . . . 4 = (join‘𝐾)
3 3at.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33atlem7 35093 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
543expia 1286 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
6 hllat 34968 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7 simpl 472 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
8 simpr1 1087 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
9 eqid 2651 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
109, 3atbase 34894 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
118, 10syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
12 simpr2 1088 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
139, 3atbase 34894 . . . . . . . . . 10 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
159, 2latjcl 17098 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
167, 11, 14, 15syl3anc 1366 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
17 simpr3 1089 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
189, 3atbase 34894 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
209, 2latjcl 17098 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
217, 16, 19, 20syl3anc 1366 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
229, 1latref 17100 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
2321, 22syldan 486 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
24 breq2 4689 . . . . . 6 (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2523, 24syl5ibcom 235 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
266, 25sylan 487 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
27263adant3 1101 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2827adantr 480 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
295, 28impbid 202 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  Latclat 17092  Atomscatm 34868  HLchlt 34955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956 This theorem is referenced by:  llncvrlpln2  35161  2lplnja  35223
 Copyright terms: Public domain W3C validator