![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr3i | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr3.1 | ⊢ 𝐴𝑅𝐵 |
3brtr3.2 | ⊢ 𝐴 = 𝐶 |
3brtr3.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3brtr3i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 3brtr3.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtrri 4708 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr3.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | breqtri 4710 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 class class class wbr 4685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 |
This theorem is referenced by: supsrlem 9970 ef01bndlem 14958 pige3 24314 log2ublem1 24718 log2ub 24721 ppiublem1 24972 logfacrlim2 24996 chebbnd1 25206 nmoptri2i 29086 dpmul4 29750 problem5 31689 fouriersw 40766 |
Copyright terms: Public domain | W3C validator |