Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1 Structured version   Visualization version   GIF version

Theorem 3dim1 35071
Description: Construct a 3-dimensional volume (height-4 element) on top of a given atom 𝑃. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝑠,𝐴   ,𝑟,𝑠,𝑞   ,𝑞,𝑟,𝑠   𝑃,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐾(𝑠,𝑟,𝑞)

Proof of Theorem 3dim1
Dummy variables 𝑢 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim0 35061 . . 3 (𝐾 ∈ HL → ∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
54adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
6 simpl2 1085 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → (𝑢𝐴𝑣𝐴𝑤𝐴))
71, 2, 33dimlem1 35062 . . . . . . . . . . . 12 (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) ∧ 𝑃 = 𝑡) → (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
873ad2antl3 1245 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
91, 2, 33dim1lem5 35070 . . . . . . . . . . 11 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
106, 8, 9syl2anc 694 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
11 simp13 1113 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑡𝐴)
12 simp22 1115 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑣𝐴)
13 simp23 1116 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑤𝐴)
1411, 12, 133jca 1261 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑣𝐴𝑤𝐴))
1514ad2antrr 762 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑡𝐴𝑣𝐴𝑤𝐴))
16 simpll1 1120 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
17 simp21 1114 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑢𝐴)
18 simp32 1118 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ¬ 𝑣 (𝑡 𝑢))
19 simp33 1119 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ¬ 𝑤 ((𝑡 𝑢) 𝑣))
2017, 18, 193jca 1261 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
2120ad2antrr 762 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
22 simplr 807 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → 𝑃𝑡)
23 simpr 476 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → 𝑃 (𝑡 𝑢))
241, 2, 33dimlem2 35063 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) ∧ (𝑃𝑡𝑃 (𝑡 𝑢))) → (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣)))
2516, 21, 22, 23, 24syl112anc 1370 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣)))
261, 2, 33dim1lem5 35070 . . . . . . . . . . . 12 (((𝑡𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
2715, 25, 26syl2anc 694 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
2811, 17, 133jca 1261 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑢𝐴𝑤𝐴))
2928ad2antrr 762 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑡𝐴𝑢𝐴𝑤𝐴))
30 simp1 1081 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
3117, 12jca 553 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑢𝐴𝑣𝐴))
32 simp31 1117 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑡𝑢)
3332, 19jca 553 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
3430, 31, 333jca 1261 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))))
3534ad2antrr 762 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))))
36 simplrl 817 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → 𝑃𝑡)
37 simplrr 818 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ¬ 𝑃 (𝑡 𝑢))
38 simpr 476 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → 𝑃 ((𝑡 𝑢) 𝑣))
391, 2, 33dimlem3 35065 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢) ∧ 𝑃 ((𝑡 𝑢) 𝑣))) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢)))
4035, 36, 37, 38, 39syl13anc 1368 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢)))
411, 2, 33dim1lem5 35070 . . . . . . . . . . . . . 14 (((𝑡𝐴𝑢𝐴𝑤𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
4229, 40, 41syl2anc 694 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
4311, 17, 123jca 1261 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑢𝐴𝑣𝐴))
4443ad2antrr 762 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑡𝐴𝑢𝐴𝑣𝐴))
45 simpl1 1084 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
46 simpl21 1159 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑢𝐴)
47 simpl22 1160 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑣𝐴)
4846, 47jca 553 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝑢𝐴𝑣𝐴))
49 simpl31 1162 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑡𝑢)
50 simpl32 1163 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ¬ 𝑣 (𝑡 𝑢))
5149, 50jca 553 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢)))
5245, 48, 513jca 1261 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))))
5352adantr 480 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))))
54 simplr 807 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢)))
55 simpr 476 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ¬ 𝑃 ((𝑡 𝑢) 𝑣))
561, 2, 33dimlem4 35068 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢)) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢)))
5753, 54, 55, 56syl3anc 1366 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢)))
581, 2, 33dim1lem5 35070 . . . . . . . . . . . . . 14 (((𝑡𝐴𝑢𝐴𝑣𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
5944, 57, 58syl2anc 694 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6042, 59pm2.61dan 849 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6160anassrs 681 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ ¬ 𝑃 (𝑡 𝑢)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6227, 61pm2.61dan 849 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6310, 62pm2.61dane 2910 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
64633exp 1283 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))
65643expd 1306 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))))
66653exp 1283 . . . . . 6 (𝐾 ∈ HL → (𝑃𝐴 → (𝑡𝐴 → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))))))
6766imp43 620 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))))
6867impd 446 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → ((𝑣𝐴𝑤𝐴) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))
6968rexlimdvv 3066 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → (∃𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))
7069rexlimdvva 3067 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))
715, 70mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  lecple 15995  joincjn 16991  Atomscatm 34868  HLchlt 34955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956
This theorem is referenced by:  3dim2  35072  2dim  35074
  Copyright terms: Public domain W3C validator