MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3dvdsdec Structured version   Visualization version   GIF version

Theorem 3dvdsdec 15684
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g. 𝐴 = 𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
Hypotheses
Ref Expression
3dvdsdec.a 𝐴 ∈ ℕ0
3dvdsdec.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
3dvdsdec (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))

Proof of Theorem 3dvdsdec
StepHypRef Expression
1 dfdec10 12104 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
2 9p1e10 12103 . . . . . . . 8 (9 + 1) = 10
32eqcomi 2833 . . . . . . 7 10 = (9 + 1)
43oveq1i 7169 . . . . . 6 (10 · 𝐴) = ((9 + 1) · 𝐴)
5 9cn 11740 . . . . . . 7 9 ∈ ℂ
6 ax-1cn 10598 . . . . . . 7 1 ∈ ℂ
7 3dvdsdec.a . . . . . . . 8 𝐴 ∈ ℕ0
87nn0cni 11912 . . . . . . 7 𝐴 ∈ ℂ
95, 6, 8adddiri 10657 . . . . . 6 ((9 + 1) · 𝐴) = ((9 · 𝐴) + (1 · 𝐴))
108mulid2i 10649 . . . . . . 7 (1 · 𝐴) = 𝐴
1110oveq2i 7170 . . . . . 6 ((9 · 𝐴) + (1 · 𝐴)) = ((9 · 𝐴) + 𝐴)
124, 9, 113eqtri 2851 . . . . 5 (10 · 𝐴) = ((9 · 𝐴) + 𝐴)
1312oveq1i 7169 . . . 4 ((10 · 𝐴) + 𝐵) = (((9 · 𝐴) + 𝐴) + 𝐵)
145, 8mulcli 10651 . . . . 5 (9 · 𝐴) ∈ ℂ
15 3dvdsdec.b . . . . . 6 𝐵 ∈ ℕ0
1615nn0cni 11912 . . . . 5 𝐵 ∈ ℂ
1714, 8, 16addassi 10654 . . . 4 (((9 · 𝐴) + 𝐴) + 𝐵) = ((9 · 𝐴) + (𝐴 + 𝐵))
181, 13, 173eqtri 2851 . . 3 𝐴𝐵 = ((9 · 𝐴) + (𝐴 + 𝐵))
1918breq2i 5077 . 2 (3 ∥ 𝐴𝐵 ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
20 3z 12018 . . 3 3 ∈ ℤ
217nn0zi 12010 . . . 4 𝐴 ∈ ℤ
2215nn0zi 12010 . . . 4 𝐵 ∈ ℤ
23 zaddcl 12025 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
2421, 22, 23mp2an 690 . . 3 (𝐴 + 𝐵) ∈ ℤ
25 9nn 11738 . . . . . 6 9 ∈ ℕ
2625nnzi 12009 . . . . 5 9 ∈ ℤ
27 zmulcl 12034 . . . . 5 ((9 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (9 · 𝐴) ∈ ℤ)
2826, 21, 27mp2an 690 . . . 4 (9 · 𝐴) ∈ ℤ
29 zmulcl 12034 . . . . . . 7 ((3 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (3 · 𝐴) ∈ ℤ)
3020, 21, 29mp2an 690 . . . . . 6 (3 · 𝐴) ∈ ℤ
31 dvdsmul1 15634 . . . . . 6 ((3 ∈ ℤ ∧ (3 · 𝐴) ∈ ℤ) → 3 ∥ (3 · (3 · 𝐴)))
3220, 30, 31mp2an 690 . . . . 5 3 ∥ (3 · (3 · 𝐴))
33 3t3e9 11807 . . . . . . . 8 (3 · 3) = 9
3433eqcomi 2833 . . . . . . 7 9 = (3 · 3)
3534oveq1i 7169 . . . . . 6 (9 · 𝐴) = ((3 · 3) · 𝐴)
36 3cn 11721 . . . . . . 7 3 ∈ ℂ
3736, 36, 8mulassi 10655 . . . . . 6 ((3 · 3) · 𝐴) = (3 · (3 · 𝐴))
3835, 37eqtri 2847 . . . . 5 (9 · 𝐴) = (3 · (3 · 𝐴))
3932, 38breqtrri 5096 . . . 4 3 ∥ (9 · 𝐴)
4028, 39pm3.2i 473 . . 3 ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))
41 dvdsadd2b 15659 . . 3 ((3 ∈ ℤ ∧ (𝐴 + 𝐵) ∈ ℤ ∧ ((9 · 𝐴) ∈ ℤ ∧ 3 ∥ (9 · 𝐴))) → (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵))))
4220, 24, 40, 41mp3an 1457 . 2 (3 ∥ (𝐴 + 𝐵) ↔ 3 ∥ ((9 · 𝐴) + (𝐴 + 𝐵)))
4319, 42bitr4i 280 1 (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2113   class class class wbr 5069  (class class class)co 7159  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  3c3 11696  9c9 11702  0cn0 11900  cz 11984  cdc 12101  cdvds 15610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-dvds 15611
This theorem is referenced by:  257prm  43730  139prmALT  43766  31prm  43767
  Copyright terms: Public domain W3C validator