![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr4ri | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2676 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2676 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 |
This theorem is referenced by: cbvreucsf 3600 dfin3 3899 dfsymdif3 3926 dfif6 4122 qdass 4320 tpidm12 4322 unipr 4481 iinvdif 4624 unidif0 4868 csbcnv 5338 dfdm4 5348 dmun 5363 resres 5444 inres 5449 resdifcom 5450 resiun1 5451 resiun1OLD 5452 imainrect 5610 cnvcnv 5621 coundi 5674 coundir 5675 funopg 5960 csbov 6728 elrnmpt2res 6816 offres 7205 1st2val 7238 2nd2val 7239 mpt2mptsx 7278 oeoalem 7721 omopthlem1 7780 snec 7853 tcsni 8657 infmap2 9078 ackbij2lem3 9101 itunisuc 9279 axmulass 10016 divmul13i 10824 dfnn3 11072 halfpm6th 11291 numsucc 11587 decbin2 11721 uzrdgxfr 12806 hashxplem 13258 prprrab 13293 ids1 13413 s3s4 13724 s2s5 13725 s5s2 13726 fsumadd 14514 fsum2d 14546 fprodmul 14734 bpoly3 14833 bezout 15307 ressbas 15977 oppchomf 16427 oppr1 18680 opsrtoslem1 19532 m2detleiblem2 20482 cnfldnm 22629 cnnm 23006 volres 23342 voliunlem1 23364 uniioombllem4 23400 itg11 23503 plyid 24010 coeidp 24064 dgrid 24065 dfrelog 24357 log2ublem3 24720 bposlem8 25061 uhgrspan1 26240 ip2i 27811 bcseqi 28105 hilnormi 28148 cmcmlem 28578 fh3i 28610 fh4i 28611 pjadjii 28661 cnvoprabOLD 29626 resf1o 29633 dp3mul10 29734 dpmul4 29750 threehalves 29751 ressplusf 29778 resvsca 29958 xpinpreima 30080 cnre2csqima 30085 esum2dlem 30282 eulerpartgbij 30562 ballotth 30727 plymulx 30753 hgt750lem2 30858 elrn3 31778 domep 31822 itg2addnclem2 33592 dfcoss3 34312 cossid 34370 dfssr2 34389 areaquad 38119 cnvrcl0 38249 stoweidlem13 40548 wallispi2 40608 fourierdlem96 40737 fourierdlem97 40738 fourierdlem98 40739 fourierdlem99 40740 fourierdlem113 40754 fourierswlem 40765 dfnelbr2 41614 fmtnorec2 41780 fmtno5fac 41819 setrec2 42767 |
Copyright terms: Public domain | W3C validator |