![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3nn0 | Structured version Visualization version GIF version |
Description: 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
3nn0 | ⊢ 3 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 11224 | . 2 ⊢ 3 ∈ ℕ | |
2 | 1 | nnnn0i 11338 | 1 ⊢ 3 ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 3c3 11109 ℕ0cn0 11330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-1cn 10032 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 |
This theorem is referenced by: 7p4e11 11643 7p4e11OLD 11644 7p7e14 11647 8p4e12 11652 8p6e14 11654 9p4e13 11660 9p5e14 11661 4t4e16 11671 5t4e20 11675 5t4e20OLD 11676 6t4e24 11681 6t6e36 11684 6t6e36OLD 11685 7t4e28 11688 7t6e42 11690 8t4e32 11694 8t5e40 11695 8t5e40OLD 11696 9t4e36 11703 9t5e45 11704 9t7e63 11706 9t8e72 11707 fz0to3un2pr 12480 4fvwrd4 12498 fldiv4p1lem1div2 12676 expnass 13010 binom3 13025 fac4 13108 4bc2eq6 13156 hash3tr 13310 bpoly3 14833 bpoly4 14834 fsumcube 14835 ef4p 14887 efi4p 14911 resin4p 14912 recos4p 14913 ef01bndlem 14958 sin01bnd 14959 sin01gt0 14964 2exp6 15842 2exp8 15843 2exp16 15844 3exp3 15845 7prm 15864 11prm 15869 13prm 15870 17prm 15871 23prm 15873 prmlem2 15874 37prm 15875 43prm 15876 83prm 15877 139prm 15878 163prm 15879 317prm 15880 631prm 15881 1259lem1 15885 1259lem2 15886 1259lem3 15887 1259lem4 15888 1259lem5 15889 1259prm 15890 2503lem1 15891 2503lem2 15892 2503lem3 15893 2503prm 15894 4001lem1 15895 4001lem2 15896 4001lem3 15897 4001lem4 15898 4001prm 15899 cnfldfun 19806 ressunif 22113 tuslem 22118 tangtx 24302 1cubrlem 24613 dcubic1lem 24615 dcubic2 24616 dcubic1 24617 dcubic 24618 mcubic 24619 cubic2 24620 cubic 24621 binom4 24622 dquartlem2 24624 quart1cl 24626 quart1lem 24627 quart1 24628 quartlem1 24629 quartlem2 24630 quart 24633 log2ublem1 24718 log2ublem3 24720 log2ub 24721 log2le1 24722 birthday 24726 ppiublem2 24973 bclbnd 25050 bpos1 25053 bposlem8 25061 gausslemma2dlem4 25139 2lgslem3b 25167 2lgslem3d 25169 pntlemd 25328 pntlema 25330 pntlemb 25331 pntlemf 25339 pntlemo 25341 pntlem3 25343 tgcgr4 25471 iscgra 25746 isinag 25774 isleag 25778 iseqlg 25792 usgrexmplef 26196 upgr3v3e3cycl 27158 upgr4cycl4dv4e 27163 konigsbergiedgw 27226 konigsberglem1 27230 konigsberglem2 27231 konigsberglem3 27232 konigsberglem4 27233 ex-prmo 27446 threehalves 29751 circlemethhgt 30849 hgt750lemd 30854 hgt750lem 30857 hgt750lem2 30858 hgt750lemb 30862 hgt750lema 30863 hgt750leme 30864 tgoldbachgtde 30866 tgoldbachgtda 30867 tgoldbachgt 30869 kur14lem8 31321 jm2.23 37880 jm2.20nn 37881 rmydioph 37898 rmxdioph 37900 expdiophlem2 37906 expdioph 37907 amgm3d 38819 lhe4.4ex1a 38845 fmtno3 41788 fmtno4 41789 fmtno5lem1 41790 fmtno5lem2 41791 fmtno5lem3 41792 fmtno5lem4 41793 fmtno5 41794 257prm 41798 fmtnoprmfac2lem1 41803 fmtno4prmfac 41809 fmtno4prmfac193 41810 fmtno4nprmfac193 41811 fmtno5faclem2 41817 2exp5 41832 139prmALT 41836 31prm 41837 m5prm 41838 127prm 41840 2exp11 41842 m11nprm 41843 mod42tp1mod8 41844 tgoldbachlt 42029 tgoldbach 42030 tgoldbachltOLD 42035 tgoldbachOLD 42037 zlmodzxzldeplem1 42614 |
Copyright terms: Public domain | W3C validator |