![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 3oalem4 | Structured version Visualization version GIF version |
Description: Lemma for 3OA (weak) orthoarguesian law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3oalem4.3 | ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) |
Ref | Expression |
---|---|
3oalem4 | ⊢ 𝑅 ⊆ (⊥‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3oalem4.3 | . 2 ⊢ 𝑅 = ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) | |
2 | inss1 3866 | . 2 ⊢ ((⊥‘𝐵) ∩ (𝐵 ∨ℋ 𝐴)) ⊆ (⊥‘𝐵) | |
3 | 1, 2 | eqsstri 3668 | 1 ⊢ 𝑅 ⊆ (⊥‘𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∩ cin 3606 ⊆ wss 3607 ‘cfv 5926 (class class class)co 6690 ⊥cort 27915 ∨ℋ chj 27918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 df-ss 3621 |
This theorem is referenced by: 3oalem5 28653 |
Copyright terms: Public domain | W3C validator |