Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3orbi123 Structured version   Visualization version   GIF version

Theorem 3orbi123 39034
Description: pm4.39 933 with a 3-conjunct antecedent. This proof is 3orbi123VD 39399 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
3orbi123 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂)))

Proof of Theorem 3orbi123
StepHypRef Expression
1 simp1 1081 . 2 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (𝜑𝜓))
2 simp2 1082 . 2 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (𝜒𝜃))
3 simp3 1083 . 2 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (𝜏𝜂))
41, 2, 33orbi123d 1438 1 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3o 1053  w3a 1054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056
This theorem is referenced by:  sbcoreleleq  39062  sbcoreleleqVD  39409
  Copyright terms: Public domain W3C validator