Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem4 Structured version   Visualization version   GIF version

Theorem 3wlkdlem4 27140
 Description: Lemma 4 for 3wlkd 27148. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
Assertion
Ref Expression
3wlkdlem4 (𝜑 → ∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem4
StepHypRef Expression
1 3wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
2 3wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3 3wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
42, 3, 13wlkdlem3 27139 . . 3 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 simpl 472 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
65eleq1d 2715 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ 𝑉𝐴𝑉))
7 simpr 476 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
87eleq1d 2715 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ 𝑉𝐵𝑉))
96, 8anbi12d 747 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉) ↔ (𝐴𝑉𝐵𝑉)))
109biimparc 503 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))
11 c0ex 10072 . . . . . . . 8 0 ∈ V
12 1ex 10073 . . . . . . . 8 1 ∈ V
1311, 12pm3.2i 470 . . . . . . 7 (0 ∈ V ∧ 1 ∈ V)
14 fveq2 6229 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
1514eleq1d 2715 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉))
16 fveq2 6229 . . . . . . . . 9 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
1716eleq1d 2715 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉))
1815, 17ralprg 4266 . . . . . . 7 ((0 ∈ V ∧ 1 ∈ V) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
1913, 18mp1i 13 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
2010, 19mpbird 247 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉)
2120ex 449 . . . 4 ((𝐴𝑉𝐵𝑉) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉))
22 simpl 472 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
2322eleq1d 2715 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ 𝑉𝐶𝑉))
24 simpr 476 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
2524eleq1d 2715 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ∈ 𝑉𝐷𝑉))
2623, 25anbi12d 747 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉) ↔ (𝐶𝑉𝐷𝑉)))
2726biimparc 503 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))
28 2ex 11130 . . . . . . . 8 2 ∈ V
29 3ex 11134 . . . . . . . 8 3 ∈ V
3028, 29pm3.2i 470 . . . . . . 7 (2 ∈ V ∧ 3 ∈ V)
31 fveq2 6229 . . . . . . . . 9 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
3231eleq1d 2715 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉))
33 fveq2 6229 . . . . . . . . 9 (𝑘 = 3 → (𝑃𝑘) = (𝑃‘3))
3433eleq1d 2715 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘3) ∈ 𝑉))
3532, 34ralprg 4266 . . . . . . 7 ((2 ∈ V ∧ 3 ∈ V) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3630, 35mp1i 13 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3727, 36mpbird 247 . . . . 5 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)
3837ex 449 . . . 4 ((𝐶𝑉𝐷𝑉) → (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
3921, 38im2anan9 898 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)))
401, 4, 39sylc 65 . 2 (𝜑 → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
413fveq2i 6232 . . . . . . 7 (#‘𝐹) = (#‘⟨“𝐽𝐾𝐿”⟩)
42 s3len 13685 . . . . . . 7 (#‘⟨“𝐽𝐾𝐿”⟩) = 3
4341, 42eqtri 2673 . . . . . 6 (#‘𝐹) = 3
4443oveq2i 6701 . . . . 5 (0...(#‘𝐹)) = (0...3)
45 fz0to3un2pr 12480 . . . . 5 (0...3) = ({0, 1} ∪ {2, 3})
4644, 45eqtri 2673 . . . 4 (0...(#‘𝐹)) = ({0, 1} ∪ {2, 3})
4746raleqi 3172 . . 3 (∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉)
48 ralunb 3827 . . 3 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
4947, 48bitri 264 . 2 (∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
5040, 49sylibr 224 1 (𝜑 → ∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231   ∪ cun 3605  {cpr 4212  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  2c2 11108  3c3 11109  ...cfz 12364  #chash 13157  ⟨“cs3 13633  ⟨“cs4 13634 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-s4 13641 This theorem is referenced by:  3wlkd  27148
 Copyright terms: Public domain W3C validator