MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem4 Structured version   Visualization version   GIF version

Theorem 3wlkdlem4 27935
Description: Lemma 4 for 3wlkd 27943. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
Assertion
Ref Expression
3wlkdlem4 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem4
StepHypRef Expression
1 3wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
2 3wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3 3wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
42, 3, 13wlkdlem3 27934 . . 3 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
5 simpl 485 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
65eleq1d 2897 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ∈ 𝑉𝐴𝑉))
7 simpr 487 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
87eleq1d 2897 . . . . . . . 8 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘1) ∈ 𝑉𝐵𝑉))
96, 8anbi12d 632 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉) ↔ (𝐴𝑉𝐵𝑉)))
109biimparc 482 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉))
11 c0ex 10629 . . . . . . . 8 0 ∈ V
12 1ex 10631 . . . . . . . 8 1 ∈ V
1311, 12pm3.2i 473 . . . . . . 7 (0 ∈ V ∧ 1 ∈ V)
14 fveq2 6665 . . . . . . . . 9 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
1514eleq1d 2897 . . . . . . . 8 (𝑘 = 0 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉))
16 fveq2 6665 . . . . . . . . 9 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
1716eleq1d 2897 . . . . . . . 8 (𝑘 = 1 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉))
1815, 17ralprg 4626 . . . . . . 7 ((0 ∈ V ∧ 1 ∈ V) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
1913, 18mp1i 13 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉)))
2010, 19mpbird 259 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵)) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉)
2120ex 415 . . . 4 ((𝐴𝑉𝐵𝑉) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉))
22 simpl 485 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
2322eleq1d 2897 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ∈ 𝑉𝐶𝑉))
24 simpr 487 . . . . . . . . 9 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
2524eleq1d 2897 . . . . . . . 8 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘3) ∈ 𝑉𝐷𝑉))
2623, 25anbi12d 632 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉) ↔ (𝐶𝑉𝐷𝑉)))
2726biimparc 482 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉))
28 2ex 11708 . . . . . . . 8 2 ∈ V
29 3ex 11713 . . . . . . . 8 3 ∈ V
3028, 29pm3.2i 473 . . . . . . 7 (2 ∈ V ∧ 3 ∈ V)
31 fveq2 6665 . . . . . . . . 9 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
3231eleq1d 2897 . . . . . . . 8 (𝑘 = 2 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉))
33 fveq2 6665 . . . . . . . . 9 (𝑘 = 3 → (𝑃𝑘) = (𝑃‘3))
3433eleq1d 2897 . . . . . . . 8 (𝑘 = 3 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘3) ∈ 𝑉))
3532, 34ralprg 4626 . . . . . . 7 ((2 ∈ V ∧ 3 ∈ V) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3630, 35mp1i 13 . . . . . 6 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘2) ∈ 𝑉 ∧ (𝑃‘3) ∈ 𝑉)))
3727, 36mpbird 259 . . . . 5 (((𝐶𝑉𝐷𝑉) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)
3837ex 415 . . . 4 ((𝐶𝑉𝐷𝑉) → (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
3921, 38im2anan9 621 . . 3 (((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉)))
401, 4, 39sylc 65 . 2 (𝜑 → (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
413fveq2i 6668 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽𝐾𝐿”⟩)
42 s3len 14250 . . . . . . 7 (♯‘⟨“𝐽𝐾𝐿”⟩) = 3
4341, 42eqtri 2844 . . . . . 6 (♯‘𝐹) = 3
4443oveq2i 7161 . . . . 5 (0...(♯‘𝐹)) = (0...3)
45 fz0to3un2pr 13003 . . . . 5 (0...3) = ({0, 1} ∪ {2, 3})
4644, 45eqtri 2844 . . . 4 (0...(♯‘𝐹)) = ({0, 1} ∪ {2, 3})
4746raleqi 3414 . . 3 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉)
48 ralunb 4167 . . 3 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
4947, 48bitri 277 . 2 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ (∀𝑘 ∈ {0, 1} (𝑃𝑘) ∈ 𝑉 ∧ ∀𝑘 ∈ {2, 3} (𝑃𝑘) ∈ 𝑉))
5040, 49sylibr 236 1 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  cun 3934  {cpr 4563  cfv 6350  (class class class)co 7150  0cc0 10531  1c1 10532  2c2 11686  3c3 11687  ...cfz 12886  chash 13684  ⟨“cs3 14198  ⟨“cs4 14199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205  df-s4 14206
This theorem is referenced by:  3wlkd  27943
  Copyright terms: Public domain W3C validator