![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemntlpq | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 35679. (Contributed by NM, 24-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
4thatlem0.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
Ref | Expression |
---|---|
4atexlemntlpq | ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
2 | 4thatlem0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 4thatlem0.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | 4thatlem0.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | 4thatlem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4thatlem0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | 4thatlem0.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | 4thatlem0.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemtlw 35671 | . 2 ⊢ (𝜑 → 𝑇 ≤ 𝑊) |
10 | 1 | 4atexlemkc 35662 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ CvLat) |
11 | 1, 2, 3, 4, 5, 6, 7 | 4atexlemu 35668 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
12 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemv 35669 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ 𝐴) |
13 | 1 | 4atexlemt 35657 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
14 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemunv 35670 | . . . . . 6 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
15 | 1 | 4atexlemutvt 35658 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
16 | 5, 3 | cvlsupr5 34951 | . . . . . 6 ⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≠ 𝑈) |
17 | 10, 11, 12, 13, 14, 15, 16 | syl132anc 1384 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 𝑈) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≠ 𝑈) |
19 | 1 | 4atexlemk 35651 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ HL) |
20 | 1 | 4atexlemw 35652 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
21 | 19, 20 | jca 553 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
23 | 1 | 4atexlempw 35653 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
25 | 1 | 4atexlemq 35655 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
27 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ∈ 𝐴) |
28 | 1 | 4atexlempnq 35659 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
30 | simpr 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≤ (𝑃 ∨ 𝑄)) | |
31 | 2, 3, 4, 5, 6, 7 | lhpat3 35650 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
32 | 22, 24, 26, 27, 29, 30, 31 | syl222anc 1382 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
33 | 18, 32 | mpbird 247 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑇 ≤ 𝑊) |
34 | 33 | ex 449 | . 2 ⊢ (𝜑 → (𝑇 ≤ (𝑃 ∨ 𝑄) → ¬ 𝑇 ≤ 𝑊)) |
35 | 9, 34 | mt2d 131 | 1 ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 lecple 15995 joincjn 16991 meetcmee 16992 Atomscatm 34868 CvLatclc 34870 HLchlt 34955 LHypclh 35588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-lhyp 35592 |
This theorem is referenced by: 4atexlemc 35673 4atexlemex2 35675 4atexlemcnd 35676 |
Copyright terms: Public domain | W3C validator |