Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemunv Structured version   Visualization version   GIF version

Theorem 4atexlemunv 37201
Description: Lemma for 4atexlem7 37210. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
4atexlemunv (𝜑𝑈𝑉)

Proof of Theorem 4atexlemunv
StepHypRef Expression
1 4thatlem.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
214atexlemnslpq 37191 . 2 (𝜑 → ¬ 𝑆 (𝑃 𝑄))
314atexlemk 37182 . . . . . . 7 (𝜑𝐾 ∈ HL)
414atexlemp 37185 . . . . . . 7 (𝜑𝑃𝐴)
514atexlems 37187 . . . . . . 7 (𝜑𝑆𝐴)
6 4thatlem0.l . . . . . . . 8 = (le‘𝐾)
7 4thatlem0.j . . . . . . . 8 = (join‘𝐾)
8 4thatlem0.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatlej2 36511 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
103, 4, 5, 9syl3anc 1367 . . . . . 6 (𝜑𝑆 (𝑃 𝑆))
1110adantr 483 . . . . 5 ((𝜑𝑈 = 𝑉) → 𝑆 (𝑃 𝑆))
12 4thatlem0.v . . . . . . . . 9 𝑉 = ((𝑃 𝑆) 𝑊)
1314atexlemkl 37192 . . . . . . . . . 10 (𝜑𝐾 ∈ Lat)
141, 7, 84atexlempsb 37195 . . . . . . . . . 10 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
15 4thatlem0.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
161, 154atexlemwb 37194 . . . . . . . . . 10 (𝜑𝑊 ∈ (Base‘𝐾))
17 eqid 2821 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
18 4thatlem0.m . . . . . . . . . . 11 = (meet‘𝐾)
1917, 6, 18latmle1 17685 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
2013, 14, 16, 19syl3anc 1367 . . . . . . . . 9 (𝜑 → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
2112, 20eqbrtrid 5100 . . . . . . . 8 (𝜑𝑉 (𝑃 𝑆))
2214atexlemkc 37193 . . . . . . . . 9 (𝜑𝐾 ∈ CvLat)
23 4thatlem0.u . . . . . . . . . 10 𝑈 = ((𝑃 𝑄) 𝑊)
241, 6, 7, 18, 8, 15, 23, 124atexlemv 37200 . . . . . . . . 9 (𝜑𝑉𝐴)
2517, 6, 18latmle2 17686 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) 𝑊)
2613, 14, 16, 25syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑆) 𝑊) 𝑊)
2712, 26eqbrtrid 5100 . . . . . . . . . 10 (𝜑𝑉 𝑊)
2814atexlempw 37184 . . . . . . . . . . 11 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2928simprd 498 . . . . . . . . . 10 (𝜑 → ¬ 𝑃 𝑊)
30 nbrne2 5085 . . . . . . . . . 10 ((𝑉 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑉𝑃)
3127, 29, 30syl2anc 586 . . . . . . . . 9 (𝜑𝑉𝑃)
326, 7, 8cvlatexchb1 36469 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑉𝐴𝑆𝐴𝑃𝐴) ∧ 𝑉𝑃) → (𝑉 (𝑃 𝑆) ↔ (𝑃 𝑉) = (𝑃 𝑆)))
3322, 24, 5, 4, 31, 32syl131anc 1379 . . . . . . . 8 (𝜑 → (𝑉 (𝑃 𝑆) ↔ (𝑃 𝑉) = (𝑃 𝑆)))
3421, 33mpbid 234 . . . . . . 7 (𝜑 → (𝑃 𝑉) = (𝑃 𝑆))
3534adantr 483 . . . . . 6 ((𝜑𝑈 = 𝑉) → (𝑃 𝑉) = (𝑃 𝑆))
36 oveq2 7163 . . . . . . . 8 (𝑈 = 𝑉 → (𝑃 𝑈) = (𝑃 𝑉))
3736eqcomd 2827 . . . . . . 7 (𝑈 = 𝑉 → (𝑃 𝑉) = (𝑃 𝑈))
3814atexlemq 37186 . . . . . . . . . . 11 (𝜑𝑄𝐴)
3917, 7, 8hlatjcl 36502 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
403, 4, 38, 39syl3anc 1367 . . . . . . . . . 10 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
4117, 6, 18latmle1 17685 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
4213, 40, 16, 41syl3anc 1367 . . . . . . . . 9 (𝜑 → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
4323, 42eqbrtrid 5100 . . . . . . . 8 (𝜑𝑈 (𝑃 𝑄))
441, 6, 7, 18, 8, 15, 234atexlemu 37199 . . . . . . . . 9 (𝜑𝑈𝐴)
4517, 6, 18latmle2 17686 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
4613, 40, 16, 45syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑄) 𝑊) 𝑊)
4723, 46eqbrtrid 5100 . . . . . . . . . 10 (𝜑𝑈 𝑊)
48 nbrne2 5085 . . . . . . . . . 10 ((𝑈 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑈𝑃)
4947, 29, 48syl2anc 586 . . . . . . . . 9 (𝜑𝑈𝑃)
506, 7, 8cvlatexchb1 36469 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑄𝐴𝑃𝐴) ∧ 𝑈𝑃) → (𝑈 (𝑃 𝑄) ↔ (𝑃 𝑈) = (𝑃 𝑄)))
5122, 44, 38, 4, 49, 50syl131anc 1379 . . . . . . . 8 (𝜑 → (𝑈 (𝑃 𝑄) ↔ (𝑃 𝑈) = (𝑃 𝑄)))
5243, 51mpbid 234 . . . . . . 7 (𝜑 → (𝑃 𝑈) = (𝑃 𝑄))
5337, 52sylan9eqr 2878 . . . . . 6 ((𝜑𝑈 = 𝑉) → (𝑃 𝑉) = (𝑃 𝑄))
5435, 53eqtr3d 2858 . . . . 5 ((𝜑𝑈 = 𝑉) → (𝑃 𝑆) = (𝑃 𝑄))
5511, 54breqtrd 5091 . . . 4 ((𝜑𝑈 = 𝑉) → 𝑆 (𝑃 𝑄))
5655ex 415 . . 3 (𝜑 → (𝑈 = 𝑉𝑆 (𝑃 𝑄)))
5756necon3bd 3030 . 2 (𝜑 → (¬ 𝑆 (𝑃 𝑄) → 𝑈𝑉))
582, 57mpd 15 1 (𝜑𝑈𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  cfv 6354  (class class class)co 7155  Basecbs 16482  lecple 16571  joincjn 17553  meetcmee 17554  Latclat 17654  Atomscatm 36398  CvLatclc 36400  HLchlt 36485  LHypclh 37119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-lhyp 37123
This theorem is referenced by:  4atexlemtlw  37202  4atexlemntlpq  37203  4atexlemc  37204  4atexlemnclw  37205
  Copyright terms: Public domain W3C validator