![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4bc2eq6 | Structured version Visualization version GIF version |
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
4bc2eq6 | ⊢ (4C2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11426 | . . . . 5 ⊢ 0 ∈ ℤ | |
2 | 4z 11449 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 2z 11447 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1259 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0le2 11149 | . . . . 5 ⊢ 0 ≤ 2 | |
6 | 2re 11128 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 11135 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2lt4 11236 | . . . . . 6 ⊢ 2 < 4 | |
9 | 6, 7, 8 | ltleii 10198 | . . . . 5 ⊢ 2 ≤ 4 |
10 | 5, 9 | pm3.2i 470 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
11 | elfz4 12373 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
12 | 4, 10, 11 | mp2an 708 | . . 3 ⊢ 2 ∈ (0...4) |
13 | bcval2 13132 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
15 | 3nn0 11348 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
16 | facp1 13105 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
18 | df-4 11119 | . . . . . 6 ⊢ 4 = (3 + 1) | |
19 | 18 | fveq2i 6232 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
20 | 18 | oveq2i 6701 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
21 | 17, 19, 20 | 3eqtr4i 2683 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
22 | 4cn 11136 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
23 | 2cn 11129 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
24 | 2p2e4 11182 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
25 | 22, 23, 23, 24 | subaddrii 10408 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
26 | 25 | fveq2i 6232 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
27 | fac2 13106 | . . . . . . 7 ⊢ (!‘2) = 2 | |
28 | 26, 27 | eqtri 2673 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
29 | 28, 27 | oveq12i 6702 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
30 | 2t2e4 11215 | . . . . 5 ⊢ (2 · 2) = 4 | |
31 | 29, 30 | eqtri 2673 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
32 | 21, 31 | oveq12i 6702 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
33 | faccl 13110 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
35 | 34 | nncni 11068 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
36 | 4ne0 11155 | . . . . 5 ⊢ 4 ≠ 0 | |
37 | 35, 22, 36 | divcan4i 10810 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
38 | fac3 13107 | . . . 4 ⊢ (!‘3) = 6 | |
39 | 37, 38 | eqtri 2673 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
40 | 32, 39 | eqtri 2673 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
41 | 14, 40 | eqtri 2673 | 1 ⊢ (4C2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 ≤ cle 10113 − cmin 10304 / cdiv 10722 ℕcn 11058 2c2 11108 3c3 11109 4c4 11110 6c6 11112 ℕ0cn0 11330 ℤcz 11415 ...cfz 12364 !cfa 13100 Ccbc 13129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-seq 12842 df-fac 13101 df-bc 13130 |
This theorem is referenced by: bpoly4 14834 ex-bc 27439 |
Copyright terms: Public domain | W3C validator |