Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  4exbidv Structured version   Visualization version   GIF version

Theorem 4exbidv 1851
 Description: Formula-building rule for four existential quantifiers (deduction rule). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
4exbidv (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧   𝜑,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
212exbidv 1849 . 2 (𝜑 → (∃𝑧𝑤𝜓 ↔ ∃𝑧𝑤𝜒))
322exbidv 1849 1 (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∃wex 1701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836 This theorem depends on definitions:  df-bi 197  df-ex 1702 This theorem is referenced by:  ceqsex8v  3235  copsex4g  4919  opbrop  5159  ov3  6750  brecop  7785  addsrmo  9838  mulsrmo  9839  addsrpr  9840  mulsrpr  9841  dihopelvalcpre  36017  xihopellsmN  36023  dihopellsm  36024
 Copyright terms: Public domain W3C validator