MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem10 Structured version   Visualization version   GIF version

Theorem 4sqlem10 16282
Description: Lemma for 4sq 16299. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem10.5 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
Assertion
Ref Expression
4sqlem10 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 483 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℕ)
32nnzd 12085 . . . 4 ((𝜑𝜓) → 𝑀 ∈ ℤ)
4 zsqcl 13493 . . . 4 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
53, 4syl 17 . . 3 ((𝜑𝜓) → (𝑀↑2) ∈ ℤ)
6 4sqlem5.2 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
76adantr 483 . . . . . . . . . 10 ((𝜑𝜓) → 𝐴 ∈ ℤ)
82nnred 11652 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑀 ∈ ℝ)
98rehalfcld 11883 . . . . . . . . . . . . 13 ((𝜑𝜓) → (𝑀 / 2) ∈ ℝ)
109recnd 10668 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑀 / 2) ∈ ℂ)
1110negnegd 10987 . . . . . . . . . . 11 ((𝜑𝜓) → --(𝑀 / 2) = (𝑀 / 2))
12 4sqlem5.4 . . . . . . . . . . . . . . . . . . . 20 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
136, 1, 124sqlem5 16277 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1413adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1514simpld 497 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐵 ∈ ℤ)
1615zred 12086 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝐵 ∈ ℝ)
176, 1, 124sqlem6 16278 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1817adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1918simprd 498 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝐵 < (𝑀 / 2))
2016, 19ltned 10775 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝐵 ≠ (𝑀 / 2))
2120neneqd 3021 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ¬ 𝐵 = (𝑀 / 2))
22 2cnd 11714 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝜓) → 2 ∈ ℂ)
2322sqvald 13506 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → (2↑2) = (2 · 2))
2423oveq2d 7171 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2)))
252nncnd 11653 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → 𝑀 ∈ ℂ)
26 2ne0 11740 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
2726a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → 2 ≠ 0)
2825, 22, 27sqdivd 13522 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2)))
2925sqcld 13507 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → (𝑀↑2) ∈ ℂ)
3029, 22, 22, 27, 27divdiv1d 11446 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2)))
3124, 28, 303eqtr4d 2866 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2))
3229halfcld 11881 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → ((𝑀↑2) / 2) ∈ ℂ)
3332halfcld 11881 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) ∈ ℂ)
3415zcnd 12087 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝜓) → 𝐵 ∈ ℂ)
3534sqcld 13507 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝐵↑2) ∈ ℂ)
36 4sqlem10.5 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)
3733, 35, 36subeq0d 11004 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (((𝑀↑2) / 2) / 2) = (𝐵↑2))
3831, 37eqtr2d 2857 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝐵↑2) = ((𝑀 / 2)↑2))
39 sqeqor 13577 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4034, 10, 39syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → ((𝐵↑2) = ((𝑀 / 2)↑2) ↔ (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2))))
4138, 40mpbid 234 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (𝐵 = (𝑀 / 2) ∨ 𝐵 = -(𝑀 / 2)))
4241ord 860 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (¬ 𝐵 = (𝑀 / 2) → 𝐵 = -(𝑀 / 2)))
4321, 42mpd 15 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝐵 = -(𝑀 / 2))
4443, 15eqeltrrd 2914 . . . . . . . . . . . 12 ((𝜑𝜓) → -(𝑀 / 2) ∈ ℤ)
4544znegcld 12088 . . . . . . . . . . 11 ((𝜑𝜓) → --(𝑀 / 2) ∈ ℤ)
4611, 45eqeltrrd 2914 . . . . . . . . . 10 ((𝜑𝜓) → (𝑀 / 2) ∈ ℤ)
477, 46zaddcld 12090 . . . . . . . . 9 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℤ)
4847zred 12086 . . . . . . . 8 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℝ)
492nnrpd 12428 . . . . . . . 8 ((𝜑𝜓) → 𝑀 ∈ ℝ+)
5048, 49modcld 13242 . . . . . . 7 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ)
5150recnd 10668 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℂ)
52 0cnd 10633 . . . . . 6 ((𝜑𝜓) → 0 ∈ ℂ)
53 df-neg 10872 . . . . . . 7 -(𝑀 / 2) = (0 − (𝑀 / 2))
5443, 12, 533eqtr3g 2879 . . . . . 6 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (0 − (𝑀 / 2)))
5551, 52, 10, 54subcan2d 11038 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0)
56 dvdsval3 15610 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
572, 47, 56syl2anc 586 . . . . 5 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) = 0))
5855, 57mpbird 259 . . . 4 ((𝜑𝜓) → 𝑀 ∥ (𝐴 + (𝑀 / 2)))
59 dvdssq 15910 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
603, 47, 59syl2anc 586 . . . 4 ((𝜑𝜓) → (𝑀 ∥ (𝐴 + (𝑀 / 2)) ↔ (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2)))
6158, 60mpbid 234 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2))↑2))
6225sqvald 13506 . . . 4 ((𝜑𝜓) → (𝑀↑2) = (𝑀 · 𝑀))
632nnne0d 11686 . . . . . 6 ((𝜑𝜓) → 𝑀 ≠ 0)
64 dvdsmulcr 15638 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝐴 + (𝑀 / 2)) ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
653, 47, 3, 63, 64syl112anc 1370 . . . . 5 ((𝜑𝜓) → ((𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀) ↔ 𝑀 ∥ (𝐴 + (𝑀 / 2))))
6658, 65mpbird 259 . . . 4 ((𝜑𝜓) → (𝑀 · 𝑀) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
6762, 66eqbrtrd 5087 . . 3 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴 + (𝑀 / 2)) · 𝑀))
68 zsqcl 13493 . . . 4 ((𝐴 + (𝑀 / 2)) ∈ ℤ → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
6947, 68syl 17 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) ∈ ℤ)
7047, 3zmulcld 12092 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · 𝑀) ∈ ℤ)
715, 61, 67, 69, 70dvds2subd 15644 . 2 ((𝜑𝜓) → (𝑀↑2) ∥ (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7247zcnd 12087 . . . . 5 ((𝜑𝜓) → (𝐴 + (𝑀 / 2)) ∈ ℂ)
7372sqvald 13506 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2))↑2) = ((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))))
7473oveq1d 7170 . . 3 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
7572, 72, 25subdid 11095 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = (((𝐴 + (𝑀 / 2)) · (𝐴 + (𝑀 / 2))) − ((𝐴 + (𝑀 / 2)) · 𝑀)))
76252halvesd 11882 . . . . . . 7 ((𝜑𝜓) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
7776oveq2d 7171 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = ((𝐴 + (𝑀 / 2)) − 𝑀))
787zcnd 12087 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
7978, 10, 10pnpcan2d 11034 . . . . . 6 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − ((𝑀 / 2) + (𝑀 / 2))) = (𝐴 − (𝑀 / 2)))
8077, 79eqtr3d 2858 . . . . 5 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) − 𝑀) = (𝐴 − (𝑀 / 2)))
8180oveq2d 7171 . . . 4 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
82 subsq 13571 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑀 / 2) ∈ ℂ) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8378, 10, 82syl2anc 586 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴 + (𝑀 / 2)) · (𝐴 − (𝑀 / 2))))
8431oveq2d 7171 . . . 4 ((𝜑𝜓) → ((𝐴↑2) − ((𝑀 / 2)↑2)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8581, 83, 843eqtr2d 2862 . . 3 ((𝜑𝜓) → ((𝐴 + (𝑀 / 2)) · ((𝐴 + (𝑀 / 2)) − 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8674, 75, 853eqtr2d 2862 . 2 ((𝜑𝜓) → (((𝐴 + (𝑀 / 2))↑2) − ((𝐴 + (𝑀 / 2)) · 𝑀)) = ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
8771, 86breqtrd 5091 1 ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  (class class class)co 7155  cc 10534  0cc0 10536   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869  -cneg 10870   / cdiv 11296  cn 11637  2c2 11691  cz 11980   mod cmo 13236  cexp 13428  cdvds 15606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-gcd 15843
This theorem is referenced by:  4sqlem16  16295
  Copyright terms: Public domain W3C validator