MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4t3lem Structured version   Visualization version   GIF version

Theorem 4t3lem 11591
Description: Lemma for 4t3e12 11592 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
4t3lem.1 𝐴 ∈ ℕ0
4t3lem.2 𝐵 ∈ ℕ0
4t3lem.3 𝐶 = (𝐵 + 1)
4t3lem.4 (𝐴 · 𝐵) = 𝐷
4t3lem.5 (𝐷 + 𝐴) = 𝐸
Assertion
Ref Expression
4t3lem (𝐴 · 𝐶) = 𝐸

Proof of Theorem 4t3lem
StepHypRef Expression
1 4t3lem.3 . . 3 𝐶 = (𝐵 + 1)
21oveq2i 6626 . 2 (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1))
3 4t3lem.1 . . . . . 6 𝐴 ∈ ℕ0
43nn0cni 11264 . . . . 5 𝐴 ∈ ℂ
5 4t3lem.2 . . . . . 6 𝐵 ∈ ℕ0
65nn0cni 11264 . . . . 5 𝐵 ∈ ℂ
7 ax-1cn 9954 . . . . 5 1 ∈ ℂ
84, 6, 7adddii 10010 . . . 4 (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1))
9 4t3lem.4 . . . . 5 (𝐴 · 𝐵) = 𝐷
104mulid1i 10002 . . . . 5 (𝐴 · 1) = 𝐴
119, 10oveq12i 6627 . . . 4 ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴)
128, 11eqtri 2643 . . 3 (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴)
13 4t3lem.5 . . 3 (𝐷 + 𝐴) = 𝐸
1412, 13eqtri 2643 . 2 (𝐴 · (𝐵 + 1)) = 𝐸
152, 14eqtri 2643 1 (𝐴 · 𝐶) = 𝐸
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  (class class class)co 6615  1c1 9897   + caddc 9899   · cmul 9901  0cn0 11252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-nn 10981  df-n0 11253
This theorem is referenced by:  4t3e12  11592  4t4e16  11593  5t2e10  11594  5t3e15  11595  5t3e15OLD  11596  5t4e20  11597  5t4e20OLD  11598  5t5e25  11599  5t5e25OLD  11600  6t3e18  11602  6t4e24  11603  6t5e30  11604  6t5e30OLD  11605  6t6e36  11606  6t6e36OLD  11607  7t3e21  11609  7t4e28  11610  7t5e35  11611  7t6e42  11612  7t7e49  11613  8t3e24  11615  8t4e32  11616  8t5e40  11617  8t5e40OLD  11618  8t6e48  11619  8t6e48OLD  11620  8t7e56  11621  8t8e64  11622  9t3e27  11624  9t4e36  11625  9t5e45  11626  9t6e54  11627  9t7e63  11628  9t8e72  11629  9t9e81  11630
  Copyright terms: Public domain W3C validator