HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oai Structured version   Visualization version   GIF version

Theorem 5oai 29365
Description: Orthoarguesian law 5OA. This 8-variable inference is called 5OA because it can be converted to a 5-variable equation (see Quantum Logic Explorer). (Contributed by NM, 5-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oa.1 𝐴C
5oa.2 𝐵C
5oa.3 𝐶C
5oa.4 𝐷C
5oa.5 𝐹C
5oa.6 𝐺C
5oa.7 𝑅C
5oa.8 𝑆C
5oa.9 𝐴 ⊆ (⊥‘𝐵)
5oa.10 𝐶 ⊆ (⊥‘𝐷)
5oa.11 𝐹 ⊆ (⊥‘𝐺)
5oa.12 𝑅 ⊆ (⊥‘𝑆)
Assertion
Ref Expression
5oai (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ ((𝐹 𝐺) ∩ (𝑅 𝑆))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))

Proof of Theorem 5oai
StepHypRef Expression
1 5oa.9 . . . . . 6 𝐴 ⊆ (⊥‘𝐵)
2 5oa.1 . . . . . . 7 𝐴C
3 5oa.2 . . . . . . 7 𝐵C
42, 3osumi 29346 . . . . . 6 (𝐴 ⊆ (⊥‘𝐵) → (𝐴 + 𝐵) = (𝐴 𝐵))
51, 4ax-mp 5 . . . . 5 (𝐴 + 𝐵) = (𝐴 𝐵)
6 5oa.10 . . . . . 6 𝐶 ⊆ (⊥‘𝐷)
7 5oa.3 . . . . . . 7 𝐶C
8 5oa.4 . . . . . . 7 𝐷C
97, 8osumi 29346 . . . . . 6 (𝐶 ⊆ (⊥‘𝐷) → (𝐶 + 𝐷) = (𝐶 𝐷))
106, 9ax-mp 5 . . . . 5 (𝐶 + 𝐷) = (𝐶 𝐷)
115, 10ineq12i 4184 . . . 4 ((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) = ((𝐴 𝐵) ∩ (𝐶 𝐷))
12 5oa.11 . . . . . 6 𝐹 ⊆ (⊥‘𝐺)
13 5oa.5 . . . . . . 7 𝐹C
14 5oa.6 . . . . . . 7 𝐺C
1513, 14osumi 29346 . . . . . 6 (𝐹 ⊆ (⊥‘𝐺) → (𝐹 + 𝐺) = (𝐹 𝐺))
1612, 15ax-mp 5 . . . . 5 (𝐹 + 𝐺) = (𝐹 𝐺)
17 5oa.12 . . . . . 6 𝑅 ⊆ (⊥‘𝑆)
18 5oa.7 . . . . . . 7 𝑅C
19 5oa.8 . . . . . . 7 𝑆C
2018, 19osumi 29346 . . . . . 6 (𝑅 ⊆ (⊥‘𝑆) → (𝑅 + 𝑆) = (𝑅 𝑆))
2117, 20ax-mp 5 . . . . 5 (𝑅 + 𝑆) = (𝑅 𝑆)
2216, 21ineq12i 4184 . . . 4 ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆)) = ((𝐹 𝐺) ∩ (𝑅 𝑆))
2311, 22ineq12i 4184 . . 3 (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ ((𝐹 𝐺) ∩ (𝑅 𝑆)))
242chshii 28931 . . . 4 𝐴S
253chshii 28931 . . . 4 𝐵S
267chshii 28931 . . . 4 𝐶S
278chshii 28931 . . . 4 𝐷S
2813chshii 28931 . . . 4 𝐹S
2914chshii 28931 . . . 4 𝐺S
3018chshii 28931 . . . 4 𝑅S
3119chshii 28931 . . . 4 𝑆S
3224, 25, 26, 27, 28, 29, 30, 315oalem7 29364 . . 3 (((𝐴 + 𝐵) ∩ (𝐶 + 𝐷)) ∩ ((𝐹 + 𝐺) ∩ (𝑅 + 𝑆))) ⊆ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))
3323, 32eqsstrri 3999 . 2 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ ((𝐹 𝐺) ∩ (𝑅 𝑆))) ⊆ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))
3424, 26shscli 29021 . . . . . . . . 9 (𝐴 + 𝐶) ∈ S
3525, 27shscli 29021 . . . . . . . . 9 (𝐵 + 𝐷) ∈ S
3634, 35shincli 29066 . . . . . . . 8 ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∈ S
3724, 30shscli 29021 . . . . . . . . . 10 (𝐴 + 𝑅) ∈ S
3825, 31shscli 29021 . . . . . . . . . 10 (𝐵 + 𝑆) ∈ S
3937, 38shincli 29066 . . . . . . . . 9 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∈ S
4026, 30shscli 29021 . . . . . . . . . 10 (𝐶 + 𝑅) ∈ S
4127, 31shscli 29021 . . . . . . . . . 10 (𝐷 + 𝑆) ∈ S
4240, 41shincli 29066 . . . . . . . . 9 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∈ S
4339, 42shscli 29021 . . . . . . . 8 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ∈ S
4436, 43shincli 29066 . . . . . . 7 (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∈ S
4524, 28shscli 29021 . . . . . . . . . 10 (𝐴 + 𝐹) ∈ S
4625, 29shscli 29021 . . . . . . . . . 10 (𝐵 + 𝐺) ∈ S
4745, 46shincli 29066 . . . . . . . . 9 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
4828, 30shscli 29021 . . . . . . . . . . 11 (𝐹 + 𝑅) ∈ S
4929, 31shscli 29021 . . . . . . . . . . 11 (𝐺 + 𝑆) ∈ S
5048, 49shincli 29066 . . . . . . . . . 10 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ∈ S
5139, 50shscli 29021 . . . . . . . . 9 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
5247, 51shincli 29066 . . . . . . . 8 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
5326, 28shscli 29021 . . . . . . . . . 10 (𝐶 + 𝐹) ∈ S
5427, 29shscli 29021 . . . . . . . . . 10 (𝐷 + 𝐺) ∈ S
5553, 54shincli 29066 . . . . . . . . 9 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
5642, 50shscli 29021 . . . . . . . . 9 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
5755, 56shincli 29066 . . . . . . . 8 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
5852, 57shscli 29021 . . . . . . 7 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ∈ S
5944, 58shincli 29066 . . . . . 6 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ∈ S
6026, 59shscli 29021 . . . . 5 (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ∈ S
6124, 60shincli 29066 . . . 4 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) ∈ S
6225, 61shsleji 29074 . . 3 (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))) ⊆ (𝐵 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))
6326, 59shsleji 29074 . . . . . 6 (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
642, 7chsleji 29162 . . . . . . . . . 10 (𝐴 + 𝐶) ⊆ (𝐴 𝐶)
653, 8chsleji 29162 . . . . . . . . . 10 (𝐵 + 𝐷) ⊆ (𝐵 𝐷)
66 ss2in 4210 . . . . . . . . . 10 (((𝐴 + 𝐶) ⊆ (𝐴 𝐶) ∧ (𝐵 + 𝐷) ⊆ (𝐵 𝐷)) → ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ⊆ ((𝐴 𝐶) ∩ (𝐵 𝐷)))
6764, 65, 66mp2an 688 . . . . . . . . 9 ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ⊆ ((𝐴 𝐶) ∩ (𝐵 𝐷))
6839, 42shsleji 29074 . . . . . . . . . 10 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))
697, 18chsleji 29162 . . . . . . . . . . . . 13 (𝐶 + 𝑅) ⊆ (𝐶 𝑅)
708, 19chsleji 29162 . . . . . . . . . . . . 13 (𝐷 + 𝑆) ⊆ (𝐷 𝑆)
71 ss2in 4210 . . . . . . . . . . . . 13 (((𝐶 + 𝑅) ⊆ (𝐶 𝑅) ∧ (𝐷 + 𝑆) ⊆ (𝐷 𝑆)) → ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ⊆ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
7269, 70, 71mp2an 688 . . . . . . . . . . . 12 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ⊆ ((𝐶 𝑅) ∩ (𝐷 𝑆))
7326, 30shjshcli 29080 . . . . . . . . . . . . . 14 (𝐶 𝑅) ∈ S
7427, 31shjshcli 29080 . . . . . . . . . . . . . 14 (𝐷 𝑆) ∈ S
7573, 74shincli 29066 . . . . . . . . . . . . 13 ((𝐶 𝑅) ∩ (𝐷 𝑆)) ∈ S
7642, 75, 39shlej2i 29083 . . . . . . . . . . . 12 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ⊆ ((𝐶 𝑅) ∩ (𝐷 𝑆)) → (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))))
7772, 76ax-mp 5 . . . . . . . . . . 11 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
782, 18chsleji 29162 . . . . . . . . . . . . 13 (𝐴 + 𝑅) ⊆ (𝐴 𝑅)
793, 19chsleji 29162 . . . . . . . . . . . . 13 (𝐵 + 𝑆) ⊆ (𝐵 𝑆)
80 ss2in 4210 . . . . . . . . . . . . 13 (((𝐴 + 𝑅) ⊆ (𝐴 𝑅) ∧ (𝐵 + 𝑆) ⊆ (𝐵 𝑆)) → ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ⊆ ((𝐴 𝑅) ∩ (𝐵 𝑆)))
8178, 79, 80mp2an 688 . . . . . . . . . . . 12 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ⊆ ((𝐴 𝑅) ∩ (𝐵 𝑆))
8224, 30shjshcli 29080 . . . . . . . . . . . . . 14 (𝐴 𝑅) ∈ S
8325, 31shjshcli 29080 . . . . . . . . . . . . . 14 (𝐵 𝑆) ∈ S
8482, 83shincli 29066 . . . . . . . . . . . . 13 ((𝐴 𝑅) ∩ (𝐵 𝑆)) ∈ S
8539, 84, 75shlej1i 29082 . . . . . . . . . . . 12 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ⊆ ((𝐴 𝑅) ∩ (𝐵 𝑆)) → (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))))
8681, 85ax-mp 5 . . . . . . . . . . 11 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
8777, 86sstri 3973 . . . . . . . . . 10 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
8868, 87sstri 3973 . . . . . . . . 9 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))
89 ss2in 4210 . . . . . . . . 9 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ⊆ ((𝐴 𝐶) ∩ (𝐵 𝐷)) ∧ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) → (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ⊆ (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))))
9067, 88, 89mp2an 688 . . . . . . . 8 (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ⊆ (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))))
9152, 57shsleji 29074 . . . . . . . . 9 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))
927, 13chsleji 29162 . . . . . . . . . . . . 13 (𝐶 + 𝐹) ⊆ (𝐶 𝐹)
938, 14chsleji 29162 . . . . . . . . . . . . 13 (𝐷 + 𝐺) ⊆ (𝐷 𝐺)
94 ss2in 4210 . . . . . . . . . . . . 13 (((𝐶 + 𝐹) ⊆ (𝐶 𝐹) ∧ (𝐷 + 𝐺) ⊆ (𝐷 𝐺)) → ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ⊆ ((𝐶 𝐹) ∩ (𝐷 𝐺)))
9592, 93, 94mp2an 688 . . . . . . . . . . . 12 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ⊆ ((𝐶 𝐹) ∩ (𝐷 𝐺))
9642, 50shsleji 29074 . . . . . . . . . . . . 13 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))
9713, 18chsleji 29162 . . . . . . . . . . . . . . . 16 (𝐹 + 𝑅) ⊆ (𝐹 𝑅)
9814, 19chsleji 29162 . . . . . . . . . . . . . . . 16 (𝐺 + 𝑆) ⊆ (𝐺 𝑆)
99 ss2in 4210 . . . . . . . . . . . . . . . 16 (((𝐹 + 𝑅) ⊆ (𝐹 𝑅) ∧ (𝐺 + 𝑆) ⊆ (𝐺 𝑆)) → ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ⊆ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
10097, 98, 99mp2an 688 . . . . . . . . . . . . . . 15 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ⊆ ((𝐹 𝑅) ∩ (𝐺 𝑆))
10128, 30shjshcli 29080 . . . . . . . . . . . . . . . . 17 (𝐹 𝑅) ∈ S
10229, 31shjshcli 29080 . . . . . . . . . . . . . . . . 17 (𝐺 𝑆) ∈ S
103101, 102shincli 29066 . . . . . . . . . . . . . . . 16 ((𝐹 𝑅) ∩ (𝐺 𝑆)) ∈ S
10450, 103, 42shlej2i 29083 . . . . . . . . . . . . . . 15 (((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ⊆ ((𝐹 𝑅) ∩ (𝐺 𝑆)) → (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
105100, 104ax-mp 5 . . . . . . . . . . . . . 14 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
10642, 75, 103shlej1i 29082 . . . . . . . . . . . . . . 15 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ⊆ ((𝐶 𝑅) ∩ (𝐷 𝑆)) → (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
10772, 106ax-mp 5 . . . . . . . . . . . . . 14 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
108105, 107sstri 3973 . . . . . . . . . . . . 13 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
10996, 108sstri 3973 . . . . . . . . . . . 12 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
110 ss2in 4210 . . . . . . . . . . . 12 ((((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ⊆ ((𝐶 𝐹) ∩ (𝐷 𝐺)) ∧ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) → (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
11195, 109, 110mp2an 688 . . . . . . . . . . 11 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
1127, 13chjcli 29161 . . . . . . . . . . . . . . 15 (𝐶 𝐹) ∈ C
1138, 14chjcli 29161 . . . . . . . . . . . . . . 15 (𝐷 𝐺) ∈ C
114112, 113chincli 29164 . . . . . . . . . . . . . 14 ((𝐶 𝐹) ∩ (𝐷 𝐺)) ∈ C
115114chshii 28931 . . . . . . . . . . . . 13 ((𝐶 𝐹) ∩ (𝐷 𝐺)) ∈ S
11675, 103shjshcli 29080 . . . . . . . . . . . . 13 (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ∈ S
117115, 116shincli 29066 . . . . . . . . . . . 12 (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∈ S
11857, 117, 52shlej2i 29083 . . . . . . . . . . 11 ((((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) → ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))
119111, 118ax-mp 5 . . . . . . . . . 10 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
1202, 13chsleji 29162 . . . . . . . . . . . . 13 (𝐴 + 𝐹) ⊆ (𝐴 𝐹)
1213, 14chsleji 29162 . . . . . . . . . . . . 13 (𝐵 + 𝐺) ⊆ (𝐵 𝐺)
122 ss2in 4210 . . . . . . . . . . . . 13 (((𝐴 + 𝐹) ⊆ (𝐴 𝐹) ∧ (𝐵 + 𝐺) ⊆ (𝐵 𝐺)) → ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ⊆ ((𝐴 𝐹) ∩ (𝐵 𝐺)))
123120, 121, 122mp2an 688 . . . . . . . . . . . 12 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ⊆ ((𝐴 𝐹) ∩ (𝐵 𝐺))
12439, 50shsleji 29074 . . . . . . . . . . . . 13 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))
12550, 103, 39shlej2i 29083 . . . . . . . . . . . . . . 15 (((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ⊆ ((𝐹 𝑅) ∩ (𝐺 𝑆)) → (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
126100, 125ax-mp 5 . . . . . . . . . . . . . 14 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
12739, 84, 103shlej1i 29082 . . . . . . . . . . . . . . 15 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ⊆ ((𝐴 𝑅) ∩ (𝐵 𝑆)) → (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
12881, 127ax-mp 5 . . . . . . . . . . . . . 14 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
129126, 128sstri 3973 . . . . . . . . . . . . 13 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∨ ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
130124, 129sstri 3973 . . . . . . . . . . . 12 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))
131 ss2in 4210 . . . . . . . . . . . 12 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ⊆ ((𝐴 𝐹) ∩ (𝐵 𝐺)) ∧ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ⊆ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) → (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
132123, 130, 131mp2an 688 . . . . . . . . . . 11 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))
1332, 13chjcli 29161 . . . . . . . . . . . . . . 15 (𝐴 𝐹) ∈ C
1343, 14chjcli 29161 . . . . . . . . . . . . . . 15 (𝐵 𝐺) ∈ C
135133, 134chincli 29164 . . . . . . . . . . . . . 14 ((𝐴 𝐹) ∩ (𝐵 𝐺)) ∈ C
136135chshii 28931 . . . . . . . . . . . . 13 ((𝐴 𝐹) ∩ (𝐵 𝐺)) ∈ S
13784, 103shjshcli 29080 . . . . . . . . . . . . 13 (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))) ∈ S
138136, 137shincli 29066 . . . . . . . . . . . 12 (((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∈ S
13952, 138, 117shlej1i 29082 . . . . . . . . . . 11 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ⊆ (((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) → ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))
140132, 139ax-mp 5 . . . . . . . . . 10 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
141119, 140sstri 3973 . . . . . . . . 9 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∨ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
14291, 141sstri 3973 . . . . . . . 8 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))
143 ss2in 4210 . . . . . . . 8 (((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ⊆ (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∧ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ⊆ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))) → ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ⊆ ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))
14490, 142, 143mp2an 688 . . . . . . 7 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ⊆ ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))
1452, 7chjcli 29161 . . . . . . . . . . . 12 (𝐴 𝐶) ∈ C
1463, 8chjcli 29161 . . . . . . . . . . . 12 (𝐵 𝐷) ∈ C
147145, 146chincli 29164 . . . . . . . . . . 11 ((𝐴 𝐶) ∩ (𝐵 𝐷)) ∈ C
14884, 75shjcli 29079 . . . . . . . . . . 11 (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆))) ∈ C
149147, 148chincli 29164 . . . . . . . . . 10 (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∈ C
150149chshii 28931 . . . . . . . . 9 (((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∈ S
151138, 117shjshcli 29080 . . . . . . . . 9 ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))) ∈ S
152150, 151shincli 29066 . . . . . . . 8 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))) ∈ S
15359, 152, 26shlej2i 29083 . . . . . . 7 (((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ⊆ ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))) → (𝐶 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))))
154144, 153ax-mp 5 . . . . . 6 (𝐶 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))
15563, 154sstri 3973 . . . . 5 (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))
156 sslin 4208 . . . . 5 ((𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))) ⊆ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))) → (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) ⊆ (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))
157155, 156ax-mp 5 . . . 4 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) ⊆ (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))))
15826, 152shjshcli 29080 . . . . . 6 (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))) ∈ S
15924, 158shincli 29066 . . . . 5 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))) ∈ S
16061, 159, 25shlej2i 29083 . . . 4 ((𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) ⊆ (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))) → (𝐵 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆))))))))))
161157, 160ax-mp 5 . . 3 (𝐵 (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))
16262, 161sstri 3973 . 2 (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))
16333, 162sstri 3973 1 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ ((𝐹 𝐺) ∩ (𝑅 𝑆))) ⊆ (𝐵 (𝐴 ∩ (𝐶 ((((𝐴 𝐶) ∩ (𝐵 𝐷)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐶 𝑅) ∩ (𝐷 𝑆)))) ∩ ((((𝐴 𝐹) ∩ (𝐵 𝐺)) ∩ (((𝐴 𝑅) ∩ (𝐵 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))) ∨ (((𝐶 𝐹) ∩ (𝐷 𝐺)) ∩ (((𝐶 𝑅) ∩ (𝐷 𝑆)) ∨ ((𝐹 𝑅) ∩ (𝐺 𝑆)))))))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1528  wcel 2105  cin 3932  wss 3933  cfv 6348  (class class class)co 7145   C cch 28633  cort 28634   + cph 28635   chj 28637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvmulass 28711  ax-hvdistr1 28712  ax-hvdistr2 28713  ax-hvmul0 28714  ax-hfi 28783  ax-his1 28786  ax-his2 28787  ax-his3 28788  ax-his4 28789  ax-hcompl 28906
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-cn 21763  df-cnp 21764  df-lm 21765  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cfil 23785  df-cau 23786  df-cmet 23787  df-grpo 28197  df-gid 28198  df-ginv 28199  df-gdiv 28200  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-vs 28303  df-nmcv 28304  df-ims 28305  df-dip 28405  df-ssp 28426  df-ph 28517  df-cbn 28567  df-hnorm 28672  df-hba 28673  df-hvsub 28675  df-hlim 28676  df-hcau 28677  df-sh 28911  df-ch 28925  df-oc 28956  df-ch0 28957  df-shs 29012  df-chj 29014  df-pjh 29099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator