HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem1 Structured version   Visualization version   GIF version

Theorem 5oalem1 28641
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem1.1 𝐴S
5oalem1.2 𝐵S
5oalem1.3 𝐶S
5oalem1.4 𝑅S
Assertion
Ref Expression
5oalem1 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))

Proof of Theorem 5oalem1
StepHypRef Expression
1 simplll 813 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥𝐴)
2 5oalem1.1 . . . . . . . 8 𝐴S
32sheli 28199 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
43ad2antrr 762 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥 ∈ ℋ)
5 5oalem1.3 . . . . . . . 8 𝐶S
65sheli 28199 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
76adantr 480 . . . . . 6 ((𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅) → 𝑧 ∈ ℋ)
8 hvaddsub12 28023 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = (𝑧 + (𝑥 𝑧)))
983anidm23 1425 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = (𝑧 + (𝑥 𝑧)))
10 hvsubid 28011 . . . . . . . . 9 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
1110oveq2d 6706 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑥 + (𝑧 𝑧)) = (𝑥 + 0))
12 ax-hvaddid 27989 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑥 + 0) = 𝑥)
1311, 12sylan9eqr 2707 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = 𝑥)
149, 13eqtr3d 2687 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 + (𝑥 𝑧)) = 𝑥)
154, 7, 14syl2an 493 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑧 + (𝑥 𝑧)) = 𝑥)
16 5oalem1.4 . . . . . . 7 𝑅S
175, 16shsvai 28351 . . . . . 6 ((𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅) → (𝑧 + (𝑥 𝑧)) ∈ (𝐶 + 𝑅))
1817adantl 481 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑧 + (𝑥 𝑧)) ∈ (𝐶 + 𝑅))
1915, 18eqeltrrd 2731 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐶 + 𝑅))
201, 19elind 3831 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)))
21 simpllr 815 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑦𝐵)
225, 16shscli 28304 . . . . . 6 (𝐶 + 𝑅) ∈ S
232, 22shincli 28349 . . . . 5 (𝐴 ∩ (𝐶 + 𝑅)) ∈ S
24 5oalem1.2 . . . . 5 𝐵S
2523, 24shsvai 28351 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)) ∧ 𝑦𝐵) → (𝑥 + 𝑦) ∈ ((𝐴 ∩ (𝐶 + 𝑅)) + 𝐵))
2623, 24shscomi 28350 . . . 4 ((𝐴 ∩ (𝐶 + 𝑅)) + 𝐵) = (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))
2725, 26syl6eleq 2740 . . 3 ((𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)) ∧ 𝑦𝐵) → (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
2820, 21, 27syl2anc 694 . 2 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
29 eleq1 2718 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))))
3029ad2antlr 763 . 2 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))))
3128, 30mpbird 247 1 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cin 3606  (class class class)co 6690  chil 27904   + cva 27905  0c0v 27909   cmv 27910   S csh 27913   + cph 27916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-neg 10307  df-grpo 27475  df-ablo 27527  df-hvsub 27956  df-sh 28192  df-shs 28295
This theorem is referenced by:  5oalem6  28646
  Copyright terms: Public domain W3C validator