HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem3 Structured version   Visualization version   GIF version

Theorem 5oalem3 29360
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem3.1 𝐴S
5oalem3.2 𝐵S
5oalem3.3 𝐶S
5oalem3.4 𝐷S
5oalem3.5 𝐹S
5oalem3.6 𝐺S
Assertion
Ref Expression
5oalem3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))

Proof of Theorem 5oalem3
StepHypRef Expression
1 anandir 673 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
2 5oalem3.1 . . . . . . 7 𝐴S
3 5oalem3.2 . . . . . . 7 𝐵S
4 5oalem3.5 . . . . . . 7 𝐹S
5 5oalem3.6 . . . . . . 7 𝐺S
62, 3, 4, 55oalem2 29359 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) → (𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)))
7 5oalem3.3 . . . . . . 7 𝐶S
8 5oalem3.4 . . . . . . 7 𝐷S
97, 8, 4, 55oalem2 29359 . . . . . 6 ((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔)) → (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))
106, 9anim12i 612 . . . . 5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
1110an4s 656 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
121, 11sylanb 581 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
132, 4shscli 29021 . . . . 5 (𝐴 + 𝐹) ∈ S
143, 5shscli 29021 . . . . 5 (𝐵 + 𝐺) ∈ S
1513, 14shincli 29066 . . . 4 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
167, 4shscli 29021 . . . . 5 (𝐶 + 𝐹) ∈ S
178, 5shscli 29021 . . . . 5 (𝐷 + 𝐺) ∈ S
1816, 17shincli 29066 . . . 4 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
1915, 18shsvsi 29071 . . 3 (((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
2012, 19syl 17 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
212sheli 28918 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
2221adantr 481 . . . . . 6 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ℋ)
237sheli 28918 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
2423adantr 481 . . . . . 6 ((𝑧𝐶𝑤𝐷) → 𝑧 ∈ ℋ)
2522, 24anim12i 612 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ))
264sheli 28918 . . . . . 6 (𝑓𝐹𝑓 ∈ ℋ)
2726adantr 481 . . . . 5 ((𝑓𝐹𝑔𝐺) → 𝑓 ∈ ℋ)
28 hvsubsub4 28764 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑓 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑓 ∈ ℋ)) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
2928anandirs 675 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
30 hvsubid 28730 . . . . . . . 8 (𝑓 ∈ ℋ → (𝑓 𝑓) = 0)
3130oveq2d 7161 . . . . . . 7 (𝑓 ∈ ℋ → ((𝑥 𝑧) − (𝑓 𝑓)) = ((𝑥 𝑧) − 0))
32 hvsubcl 28721 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
33 hvsub0 28780 . . . . . . . 8 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3432, 33syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3531, 34sylan9eqr 2875 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑧) − (𝑓 𝑓)) = (𝑥 𝑧))
3629, 35eqtrd 2853 . . . . 5 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3725, 27, 36syl2an 595 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3837eleq1d 2894 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
3938adantr 481 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
4020, 39mpbid 233 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  cin 3932  (class class class)co 7145  chba 28623   + cva 28624  0c0v 28628   cmv 28629   S csh 28632   + cph 28635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvmulass 28711  ax-hvdistr1 28712  ax-hvdistr2 28713  ax-hvmul0 28714
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-nn 11627  df-grpo 28197  df-ablo 28249  df-hvsub 28675  df-hlim 28676  df-sh 28911  df-ch 28925  df-shs 29012
This theorem is referenced by:  5oalem4  29361
  Copyright terms: Public domain W3C validator