HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem6 Structured version   Visualization version   GIF version

Theorem 5oalem6 28364
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1 𝐴S
5oalem5.2 𝐵S
5oalem5.3 𝐶S
5oalem5.4 𝐷S
5oalem5.5 𝐹S
5oalem5.6 𝐺S
5oalem5.7 𝑅S
5oalem5.8 𝑆S
Assertion
Ref Expression
5oalem6 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))

Proof of Theorem 5oalem6
StepHypRef Expression
1 an4 864 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤))))
2 an4 864 . . . 4 ((((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢))) ↔ (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) ∧ ( = (𝑓 + 𝑔) ∧ = (𝑣 + 𝑢))))
3 eqeq1 2625 . . . . . . . . . . 11 ( = (𝑥 + 𝑦) → ( = (𝑣 + 𝑢) ↔ (𝑥 + 𝑦) = (𝑣 + 𝑢)))
43biimpcd 239 . . . . . . . . . 10 ( = (𝑣 + 𝑢) → ( = (𝑥 + 𝑦) → (𝑥 + 𝑦) = (𝑣 + 𝑢)))
5 eqeq1 2625 . . . . . . . . . . 11 ( = (𝑧 + 𝑤) → ( = (𝑣 + 𝑢) ↔ (𝑧 + 𝑤) = (𝑣 + 𝑢)))
65biimpcd 239 . . . . . . . . . 10 ( = (𝑣 + 𝑢) → ( = (𝑧 + 𝑤) → (𝑧 + 𝑤) = (𝑣 + 𝑢)))
74, 6anim12d 585 . . . . . . . . 9 ( = (𝑣 + 𝑢) → (( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) → ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢))))
8 eqeq1 2625 . . . . . . . . . 10 ( = (𝑓 + 𝑔) → ( = (𝑣 + 𝑢) ↔ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
98biimpcd 239 . . . . . . . . 9 ( = (𝑣 + 𝑢) → ( = (𝑓 + 𝑔) → (𝑓 + 𝑔) = (𝑣 + 𝑢)))
107, 9anim12d 585 . . . . . . . 8 ( = (𝑣 + 𝑢) → ((( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) ∧ = (𝑓 + 𝑔)) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
1110expdcom 455 . . . . . . 7 (( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) → ( = (𝑓 + 𝑔) → ( = (𝑣 + 𝑢) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))))
1211imp32 449 . . . . . 6 ((( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) ∧ ( = (𝑓 + 𝑔) ∧ = (𝑣 + 𝑢))) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
1312anim2i 592 . . . . 5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤)) ∧ ( = (𝑓 + 𝑔) ∧ = (𝑣 + 𝑢)))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
1413an4s 868 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ( = (𝑥 + 𝑦) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) ∧ ( = (𝑓 + 𝑔) ∧ = (𝑣 + 𝑢)))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
151, 2, 14syl2anb 496 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
16 5oalem5.1 . . . 4 𝐴S
17 5oalem5.2 . . . 4 𝐵S
18 5oalem5.3 . . . 4 𝐶S
19 5oalem5.4 . . . 4 𝐷S
20 5oalem5.5 . . . 4 𝐹S
21 5oalem5.6 . . . 4 𝐺S
22 5oalem5.7 . . . 4 𝑅S
23 5oalem5.8 . . . 4 𝑆S
2416, 17, 18, 19, 20, 21, 22, 235oalem5 28363 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
2515, 24syl 17 . 2 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
2616, 18shscli 28022 . . . . . . . . . 10 (𝐴 + 𝐶) ∈ S
2717, 19shscli 28022 . . . . . . . . . 10 (𝐵 + 𝐷) ∈ S
2826, 27shincli 28067 . . . . . . . . 9 ((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∈ S
2916, 22shscli 28022 . . . . . . . . . . 11 (𝐴 + 𝑅) ∈ S
3017, 23shscli 28022 . . . . . . . . . . 11 (𝐵 + 𝑆) ∈ S
3129, 30shincli 28067 . . . . . . . . . 10 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∈ S
3218, 22shscli 28022 . . . . . . . . . . 11 (𝐶 + 𝑅) ∈ S
3319, 23shscli 28022 . . . . . . . . . . 11 (𝐷 + 𝑆) ∈ S
3432, 33shincli 28067 . . . . . . . . . 10 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∈ S
3531, 34shscli 28022 . . . . . . . . 9 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆))) ∈ S
3628, 35shincli 28067 . . . . . . . 8 (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∈ S
3716, 20shscli 28022 . . . . . . . . . . 11 (𝐴 + 𝐹) ∈ S
3817, 21shscli 28022 . . . . . . . . . . 11 (𝐵 + 𝐺) ∈ S
3937, 38shincli 28067 . . . . . . . . . 10 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
4020, 22shscli 28022 . . . . . . . . . . . 12 (𝐹 + 𝑅) ∈ S
4121, 23shscli 28022 . . . . . . . . . . . 12 (𝐺 + 𝑆) ∈ S
4240, 41shincli 28067 . . . . . . . . . . 11 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ∈ S
4331, 42shscli 28022 . . . . . . . . . 10 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
4439, 43shincli 28067 . . . . . . . . 9 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
4518, 20shscli 28022 . . . . . . . . . . 11 (𝐶 + 𝐹) ∈ S
4619, 21shscli 28022 . . . . . . . . . . 11 (𝐷 + 𝐺) ∈ S
4745, 46shincli 28067 . . . . . . . . . 10 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
4834, 42shscli 28022 . . . . . . . . . 10 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
4947, 48shincli 28067 . . . . . . . . 9 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
5044, 49shscli 28022 . . . . . . . 8 ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) ∈ S
5136, 50shincli 28067 . . . . . . 7 ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) ∈ S
5216, 17, 18, 515oalem1 28359 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
5352expr 642 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ 𝑧𝐶) → ((𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))))
5453adantrr 752 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ (𝑧𝐶𝑤𝐷)) → ((𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))))
5554adantrr 752 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) → ((𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))))
5655adantr 481 . 2 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ((𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))))))
5725, 56mpd 15 1 (((((𝑥𝐴𝑦𝐵) ∧ = (𝑥 + 𝑦)) ∧ ((𝑧𝐶𝑤𝐷) ∧ = (𝑧 + 𝑤))) ∧ (((𝑓𝐹𝑔𝐺) ∧ = (𝑓 + 𝑔)) ∧ ((𝑣𝑅𝑢𝑆) ∧ = (𝑣 + 𝑢)))) → ∈ (𝐵 + (𝐴 ∩ (𝐶 + ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cin 3554  (class class class)co 6604   + cva 27623   cmv 27628   S csh 27631   + cph 27634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-hilex 27702  ax-hfvadd 27703  ax-hvcom 27704  ax-hvass 27705  ax-hv0cl 27706  ax-hvaddid 27707  ax-hfvmul 27708  ax-hvmulid 27709  ax-hvmulass 27710  ax-hvdistr1 27711  ax-hvdistr2 27712  ax-hvmul0 27713
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-ltxr 10023  df-sub 10212  df-neg 10213  df-nn 10965  df-grpo 27193  df-ablo 27245  df-hvsub 27674  df-hlim 27675  df-sh 27910  df-ch 27924  df-shs 28013
This theorem is referenced by:  5oalem7  28365
  Copyright terms: Public domain W3C validator