MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5t2e10OLD Structured version   Visualization version   GIF version

Theorem 5t2e10OLD 11167
Description: 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) Obsolete version of 5t2e10 11619 as of 8-Sep-2021. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
5t2e10OLD (5 · 2) = 10

Proof of Theorem 5t2e10OLD
StepHypRef Expression
1 5cn 11085 . . 3 5 ∈ ℂ
21times2i 11133 . 2 (5 · 2) = (5 + 5)
3 5p5e10OLD 11153 . 2 (5 + 5) = 10
42, 3eqtri 2642 1 (5 · 2) = 10
Colors of variables: wff setvar class
Syntax hints:   = wceq 1481  (class class class)co 6635   + caddc 9924   · cmul 9926  2c2 11055  5c5 11058  10c10 11063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rrecex 9993  ax-cnre 9994
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-iota 5839  df-fv 5884  df-ov 6638  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-10OLD 11072
This theorem is referenced by:  5t3e15OLD  11621  10nprmOLD  15802
  Copyright terms: Public domain W3C validator