Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  6rexfrabdioph Structured version   Visualization version   GIF version

Theorem 6rexfrabdioph 36843
Description: Diophantine set builder for existential quantifier, explicit substitution, six variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
rexfrabdioph.4 𝐽 = (𝐾 + 1)
rexfrabdioph.5 𝐼 = (𝐽 + 1)
rexfrabdioph.6 𝐻 = (𝐼 + 1)
Assertion
Ref Expression
6rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝐻   𝑡,𝐼,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐽,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑝)

Proof of Theorem 6rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sbc4rex 36833 . . . . . . . . 9 ([(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑)
21sbcbii 3473 . . . . . . . 8 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑[(𝑎𝑀) / 𝑣]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑)
3 sbc4rex 36833 . . . . . . . 8 ([(𝑎𝑀) / 𝑣]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
42, 3bitri 264 . . . . . . 7 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
54sbcbii 3473 . . . . . 6 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
6 sbc4rex 36833 . . . . . 6 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
75, 6bitri 264 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
87a1i 11 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...𝐿)) → ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑 ↔ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑))
98rabbiia 3173 . . 3 {𝑎 ∈ (ℕ0𝑚 (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0𝑚 (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑}
10 rexfrabdioph.2 . . . . . . 7 𝐿 = (𝑀 + 1)
11 rexfrabdioph.1 . . . . . . . . 9 𝑀 = (𝑁 + 1)
12 nn0p1nn 11276 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1311, 12syl5eqel 2702 . . . . . . . 8 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
1413peano2nnd 10981 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
1510, 14syl5eqel 2702 . . . . . 6 (𝑁 ∈ ℕ0𝐿 ∈ ℕ)
1615nnnn0d 11295 . . . . 5 (𝑁 ∈ ℕ0𝐿 ∈ ℕ0)
1716adantr 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → 𝐿 ∈ ℕ0)
18 sbcrot5 36836 . . . . . . . . . . . . 13 ([(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑)
1918sbcbii 3473 . . . . . . . . . . . 12 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑎𝑀) / 𝑣][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑)
20 sbcrot5 36836 . . . . . . . . . . . 12 ([(𝑎𝑀) / 𝑣][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2119, 20bitri 264 . . . . . . . . . . 11 ([(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2221sbcbii 3473 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
23 sbcrot5 36836 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2422, 23bitri 264 . . . . . . . . 9 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
2524sbcbii 3473 . . . . . . . 8 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑)
26 reseq1 5350 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)))
2726sbccomieg 36837 . . . . . . . . 9 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
28 fzssp1 12326 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (1...(𝑁 + 1))
2911oveq2i 6615 . . . . . . . . . . . . 13 (1...𝑀) = (1...(𝑁 + 1))
3028, 29sseqtr4i 3617 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...𝑀)
31 fzssp1 12326 . . . . . . . . . . . . 13 (1...𝑀) ⊆ (1...(𝑀 + 1))
3210oveq2i 6615 . . . . . . . . . . . . 13 (1...𝐿) = (1...(𝑀 + 1))
3331, 32sseqtr4i 3617 . . . . . . . . . . . 12 (1...𝑀) ⊆ (1...𝐿)
3430, 33sstri 3592 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝐿)
35 resabs1 5386 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝐿) → ((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
36 dfsbcq 3419 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
3734, 35, 36mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
38 fveq1 6147 . . . . . . . . . . . . 13 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝐿))‘𝑀))
3938sbccomieg 36837 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
40 elfz1end 12313 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
4113, 40sylib 208 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
4233, 41sseldi 3581 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝐿))
43 fvres 6164 . . . . . . . . . . . . . 14 (𝑀 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀))
44 dfsbcq 3419 . . . . . . . . . . . . . 14 (((𝑡 ↾ (1...𝐿))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
4542, 43, 443syl 18 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
46 vex 3189 . . . . . . . . . . . . . . . . 17 𝑡 ∈ V
4746resex 5402 . . . . . . . . . . . . . . . 16 (𝑡 ↾ (1...𝐿)) ∈ V
48 fveq1 6147 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑡 ↾ (1...𝐿)) → (𝑎𝐿) = ((𝑡 ↾ (1...𝐿))‘𝐿))
4948sbcco3g 3971 . . . . . . . . . . . . . . . 16 ((𝑡 ↾ (1...𝐿)) ∈ V → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5047, 49ax-mp 5 . . . . . . . . . . . . . . 15 ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑)
51 elfz1end 12313 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ ↔ 𝐿 ∈ (1...𝐿))
5215, 51sylib 208 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝐿 ∈ (1...𝐿))
53 fvres 6164 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (1...𝐿) → ((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿))
54 dfsbcq 3419 . . . . . . . . . . . . . . . 16 (((𝑡 ↾ (1...𝐿))‘𝐿) = (𝑡𝐿) → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5552, 53, 543syl 18 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5650, 55syl5bb 272 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5756sbcbidv 3472 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ([(𝑡𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5845, 57bitrd 268 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿))‘𝑀) / 𝑣][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
5939, 58syl5bb 272 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6059sbcbidv 3472 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6137, 60syl5bb 272 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝐿)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6227, 61syl5bb 272 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6325, 62syl5bbr 274 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑))
6463rabbidv 3177 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} = {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑})
6564eleq1d 2683 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻) ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)))
6665biimpar 502 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻))
67 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
68 rexfrabdioph.4 . . . . 5 𝐽 = (𝐾 + 1)
69 rexfrabdioph.5 . . . . 5 𝐼 = (𝐽 + 1)
70 rexfrabdioph.6 . . . . 5 𝐻 = (𝐼 + 1)
7167, 68, 69, 704rexfrabdioph 36842 . . . 4 ((𝐿 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝐿)) / 𝑎][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0𝑚 (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
7217, 66, 71syl2anc 692 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0𝑚 (1...𝐿)) ∣ ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿))
739, 72syl5eqel 2702 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑎 ∈ (ℕ0𝑚 (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿))
7411, 102rexfrabdioph 36840 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...𝐿)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑎𝐿) / 𝑤]𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
7573, 74syldan 487 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  {crab 2911  Vcvv 3186  [wsbc 3417  wss 3555  cres 5076  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  1c1 9881   + caddc 9883  cn 10964  0cn0 11236  ...cfz 12268  Diophcdioph 36798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-mzpcl 36766  df-mzp 36767  df-dioph 36799
This theorem is referenced by:  7rexfrabdioph  36844
  Copyright terms: Public domain W3C validator