Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  7rexfrabdioph Structured version   Visualization version   GIF version

Theorem 7rexfrabdioph 36844
Description: Diophantine set builder for existential quantifier, explicit substitution, seven variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
rexfrabdioph.4 𝐽 = (𝐾 + 1)
rexfrabdioph.5 𝐼 = (𝐽 + 1)
rexfrabdioph.6 𝐻 = (𝐼 + 1)
rexfrabdioph.7 𝐺 = (𝐻 + 1)
Assertion
Ref Expression
7rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝐺,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝑞   𝑡,𝐻,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝑞   𝑡,𝐼,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝑞   𝑡,𝐽,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝑞   𝑡,𝐾,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝑞   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝑞   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝑞   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝑝,𝑞   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑞,𝑝)

Proof of Theorem 7rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sbc2rex 36831 . . . . . . . 8 ([(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑)
2 sbc4rex 36833 . . . . . . . . 9 ([(𝑎𝑀) / 𝑣]𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑 ↔ ∃𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
322rexbii 3035 . . . . . . . 8 (∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
41, 3bitri 264 . . . . . . 7 ([(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
54sbcbii 3473 . . . . . 6 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
6 sbc2rex 36831 . . . . . 6 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢]𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
7 sbc4rex 36833 . . . . . . 7 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑 ↔ ∃𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
872rexbii 3035 . . . . . 6 (∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢]𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
95, 6, 83bitri 286 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
109a1i 11 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...𝑀)) → ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑))
1110rabbiia 3173 . . 3 {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑}
12 rexfrabdioph.1 . . . . . . 7 𝑀 = (𝑁 + 1)
13 nn0p1nn 11276 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1412, 13syl5eqel 2702 . . . . . 6 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
1514nnnn0d 11295 . . . . 5 (𝑁 ∈ ℕ0𝑀 ∈ ℕ0)
1615adantr 481 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → 𝑀 ∈ ℕ0)
17 sbcrot3 36835 . . . . . . . . . . 11 ([(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑)
1817sbcbii 3473 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑)
19 sbcrot3 36835 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑)
20 sbcrot5 36836 . . . . . . . . . . . . . 14 ([(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎𝑀) / 𝑣]𝜑)
2120sbcbii 3473 . . . . . . . . . . . . 13 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎𝑀) / 𝑣]𝜑)
22 sbcrot5 36836 . . . . . . . . . . . . 13 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎𝑀) / 𝑣]𝜑[(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
2321, 22bitri 264 . . . . . . . . . . . 12 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
2423sbcbii 3473 . . . . . . . . . . 11 ([(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
2524sbcbii 3473 . . . . . . . . . 10 ([(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
2618, 19, 253bitri 286 . . . . . . . . 9 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
2726sbcbii 3473 . . . . . . . 8 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
28 reseq1 5350 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)))
2928sbccomieg 36837 . . . . . . . . 9 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑)
30 fzssp1 12326 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...(𝑁 + 1))
3112oveq2i 6615 . . . . . . . . . . . 12 (1...𝑀) = (1...(𝑁 + 1))
3230, 31sseqtr4i 3617 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝑀)
33 resabs1 5386 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝑀) → ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
34 dfsbcq 3419 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
3532, 33, 34mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑)
36 vex 3189 . . . . . . . . . . . . . 14 𝑡 ∈ V
3736resex 5402 . . . . . . . . . . . . 13 (𝑡 ↾ (1...𝑀)) ∈ V
38 fveq1 6147 . . . . . . . . . . . . . 14 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝑀))‘𝑀))
3938sbcco3g 3971 . . . . . . . . . . . . 13 ((𝑡 ↾ (1...𝑀)) ∈ V → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
4037, 39ax-mp 5 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑)
41 elfz1end 12313 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
4214, 41sylib 208 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
43 fvres 6164 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝑀) → ((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀))
44 dfsbcq 3419 . . . . . . . . . . . . 13 (((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
4542, 43, 443syl 18 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
4640, 45syl5bb 272 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
4746sbcbidv 3472 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
4835, 47syl5bb 272 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
4929, 48syl5bb 272 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
5027, 49syl5bbr 274 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑))
5150rabbidv 3177 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} = {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑})
5251eleq1d 2683 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐺) ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)))
5352biimpar 502 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐺))
54 rexfrabdioph.2 . . . . 5 𝐿 = (𝑀 + 1)
55 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
56 rexfrabdioph.4 . . . . 5 𝐽 = (𝐾 + 1)
57 rexfrabdioph.5 . . . . 5 𝐼 = (𝐽 + 1)
58 rexfrabdioph.6 . . . . 5 𝐻 = (𝐼 + 1)
59 rexfrabdioph.7 . . . . 5 𝐺 = (𝐻 + 1)
6054, 55, 56, 57, 58, 596rexfrabdioph 36843 . . . 4 ((𝑀 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐺)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
6116, 53, 60syl2anc 692 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
6211, 61syl5eqel 2702 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀))
6312rexfrabdioph 36839 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
6462, 63syldan 487 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  {crab 2911  Vcvv 3186  [wsbc 3417  wss 3555  cres 5076  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  1c1 9881   + caddc 9883  cn 10964  0cn0 11236  ...cfz 12268  Diophcdioph 36798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-mzpcl 36766  df-mzp 36767  df-dioph 36799
This theorem is referenced by:  rmydioph  37061
  Copyright terms: Public domain W3C validator