MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  8p2e10 Structured version   Visualization version   GIF version

Theorem 8p2e10 11802
Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
8p2e10 (8 + 2) = 10

Proof of Theorem 8p2e10
StepHypRef Expression
1 df-2 11271 . . . 4 2 = (1 + 1)
21oveq2i 6824 . . 3 (8 + 2) = (8 + (1 + 1))
3 8cn 11298 . . . 4 8 ∈ ℂ
4 ax-1cn 10186 . . . 4 1 ∈ ℂ
53, 4, 4addassi 10240 . . 3 ((8 + 1) + 1) = (8 + (1 + 1))
62, 5eqtr4i 2785 . 2 (8 + 2) = ((8 + 1) + 1)
7 df-9 11278 . . 3 9 = (8 + 1)
87oveq1i 6823 . 2 (9 + 1) = ((8 + 1) + 1)
9 9p1e10 11688 . 2 (9 + 1) = 10
106, 8, 93eqtr2i 2788 1 (8 + 2) = 10
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  (class class class)co 6813  0cc0 10128  1c1 10129   + caddc 10131  2c2 11262  8c8 11268  9c9 11269  cdc 11685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-ltxr 10271  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-dec 11686
This theorem is referenced by:  8p3e11  11804  8t5e40  11849  1259lem3  16042  1259lem4  16043  2503lem2  16047  4001lem1  16050  4001lem3  16052  4001prm  16054  m11nprm  42028
  Copyright terms: Public domain W3C validator