MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  8t4e32 Structured version   Visualization version   GIF version

Theorem 8t4e32 11694
Description: 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
8t4e32 (8 · 4) = 32

Proof of Theorem 8t4e32
StepHypRef Expression
1 8nn0 11353 . 2 8 ∈ ℕ0
2 3nn0 11348 . 2 3 ∈ ℕ0
3 df-4 11119 . 2 4 = (3 + 1)
4 8t3e24 11693 . 2 (8 · 3) = 24
5 2nn0 11347 . . 3 2 ∈ ℕ0
6 4nn0 11349 . . 3 4 ∈ ℕ0
7 eqid 2651 . . 3 24 = 24
8 2p1e3 11189 . . 3 (2 + 1) = 3
91nn0cni 11342 . . . 4 8 ∈ ℂ
106nn0cni 11342 . . . 4 4 ∈ ℂ
11 8p4e12 11652 . . . 4 (8 + 4) = 12
129, 10, 11addcomli 10266 . . 3 (4 + 8) = 12
135, 6, 1, 7, 8, 5, 12decaddci 11618 . 2 (24 + 8) = 32
141, 2, 3, 4, 134t3lem 11669 1 (8 · 4) = 32
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  (class class class)co 6690  1c1 9975   · cmul 9979  2c2 11108  3c3 11109  4c4 11110  8c8 11114  cdc 11531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-dec 11532
This theorem is referenced by:  8t5e40  11695  8t5e40OLD  11696  1259lem5  15889  4001lem1  15895  pntlemf  25339  2exp5  41832
  Copyright terms: Public domain W3C validator