Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p1e10OLD Structured version   Visualization version   GIF version

Theorem 9p1e10OLD 11119
 Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) Obsolete version of 9p1e10 11456 as of 8-Sep-2021. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
9p1e10OLD (9 + 1) = 10

Proof of Theorem 9p1e10OLD
StepHypRef Expression
1 df-10OLD 11047 . 2 10 = (9 + 1)
21eqcomi 2630 1 (9 + 1) = 10
 Colors of variables: wff setvar class Syntax hints:   = wceq 1480  (class class class)co 6615  1c1 9897   + caddc 9899  9c9 11037  10c10 11038 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-cleq 2614  df-10OLD 11047 This theorem is referenced by:  dfdecOLD  11455  declecOLD  11504  9p1e10bOLD  11516
 Copyright terms: Public domain W3C validator