![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1bi | Structured version Visualization version GIF version |
Description: Inference rule introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
Ref | Expression |
---|---|
a1bi.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
a1bi | ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1bi.1 | . 2 ⊢ 𝜑 | |
2 | biimt 349 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: mt2bi 352 pm4.83 990 trut 1532 equsalvw 1977 equsalv 2146 equsalhw 2161 equsal 2327 sbequ8ALT 2435 ralv 3250 relop 5305 acsfn0 16368 cmpsub 21251 ballotlemodife 30687 bj-ssb1 32758 bj-ralvw 32990 wl-equsald 33455 lub0N 34794 glb0N 34798 |
Copyright terms: Public domain | W3C validator |