MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2 Structured version   Visualization version   GIF version

Theorem aaliou2 23816
Description: Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
aaliou2 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable group:   𝐴,𝑘,𝑥,𝑝,𝑞

Proof of Theorem aaliou2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elin 3757 . 2 (𝐴 ∈ (𝔸 ∩ ℝ) ↔ (𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ))
2 elaa 23792 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0))
3 eldifn 3694 . . . . . . . . . . . 12 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ¬ 𝑎 ∈ {0𝑝})
433ad2ant1 1074 . . . . . . . . . . 11 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 ∈ {0𝑝})
5 simpr 475 . . . . . . . . . . . . . 14 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {(𝑎‘0)}))
6 fveq1 6087 . . . . . . . . . . . . . . . . . 18 (𝑎 = (ℂ × {(𝑎‘0)}) → (𝑎𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴))
76adantl 480 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴))
8 simpl2 1057 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎𝐴) = 0)
9 simpl3 1058 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℝ)
109recnd 9924 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℂ)
11 fvex 6098 . . . . . . . . . . . . . . . . . . 19 (𝑎‘0) ∈ V
1211fvconst2 6352 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0))
1310, 12syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0))
147, 8, 133eqtr3rd 2652 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘0) = 0)
1514sneqd 4136 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → {(𝑎‘0)} = {0})
1615xpeq2d 5053 . . . . . . . . . . . . . 14 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (ℂ × {(𝑎‘0)}) = (ℂ × {0}))
175, 16eqtrd 2643 . . . . . . . . . . . . 13 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {0}))
18 df-0p 23160 . . . . . . . . . . . . 13 0𝑝 = (ℂ × {0})
1917, 18syl6eqr 2661 . . . . . . . . . . . 12 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = 0𝑝)
20 velsn 4140 . . . . . . . . . . . 12 (𝑎 ∈ {0𝑝} ↔ 𝑎 = 0𝑝)
2119, 20sylibr 222 . . . . . . . . . . 11 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 ∈ {0𝑝})
224, 21mtand 688 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 = (ℂ × {(𝑎‘0)}))
23 eldifi 3693 . . . . . . . . . . . 12 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑎 ∈ (Poly‘ℤ))
24233ad2ant1 1074 . . . . . . . . . . 11 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝑎 ∈ (Poly‘ℤ))
25 0dgrb 23723 . . . . . . . . . . 11 (𝑎 ∈ (Poly‘ℤ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)})))
2624, 25syl 17 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)})))
2722, 26mtbird 313 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ (deg‘𝑎) = 0)
28 dgrcl 23710 . . . . . . . . . . 11 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
2924, 28syl 17 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈ ℕ0)
30 elnn0 11141 . . . . . . . . . 10 ((deg‘𝑎) ∈ ℕ0 ↔ ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0))
3129, 30sylib 206 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0))
32 orel2 396 . . . . . . . . 9 (¬ (deg‘𝑎) = 0 → (((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0) → (deg‘𝑎) ∈ ℕ))
3327, 31, 32sylc 62 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈ ℕ)
34 eqid 2609 . . . . . . . . 9 (deg‘𝑎) = (deg‘𝑎)
35 simp3 1055 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
36 simp2 1054 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (𝑎𝐴) = 0)
3734, 24, 33, 35, 36aaliou 23814 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
38 oveq2 6535 . . . . . . . . . . . . . 14 (𝑘 = (deg‘𝑎) → (𝑞𝑘) = (𝑞↑(deg‘𝑎)))
3938oveq2d 6543 . . . . . . . . . . . . 13 (𝑘 = (deg‘𝑎) → (𝑥 / (𝑞𝑘)) = (𝑥 / (𝑞↑(deg‘𝑎))))
4039breq1d 4587 . . . . . . . . . . . 12 (𝑘 = (deg‘𝑎) → ((𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4140orbi2d 733 . . . . . . . . . . 11 (𝑘 = (deg‘𝑎) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
42412ralbidv 2971 . . . . . . . . . 10 (𝑘 = (deg‘𝑎) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4342rexbidv 3033 . . . . . . . . 9 (𝑘 = (deg‘𝑎) → (∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4443rspcev 3281 . . . . . . . 8 (((deg‘𝑎) ∈ ℕ ∧ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4533, 37, 44syl2anc 690 . . . . . . 7 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
46453exp 1255 . . . . . 6 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ((𝑎𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))))
4746rexlimiv 3008 . . . . 5 (∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4847adantl 480 . . . 4 ((𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0) → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
492, 48sylbi 205 . . 3 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
5049imp 443 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
511, 50sylbi 205 1 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  wrex 2896  cdif 3536  cin 3538  {csn 4124   class class class wbr 4577   × cxp 5026  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792   < clt 9930  cmin 10117   / cdiv 10533  cn 10867  0cn0 11139  cz 11210  +crp 11664  cexp 12677  abscabs 13768  0𝑝c0p 23159  Polycply 23661  degcdgr 23664  𝔸caa 23790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-grp 17194  df-minusg 17195  df-mulg 17310  df-subg 17360  df-cntz 17519  df-cmn 17964  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-subrg 18547  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-cmp 20942  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-0p 23160  df-limc 23353  df-dv 23354  df-dvn 23355  df-cpn 23356  df-ply 23665  df-idp 23666  df-coe 23667  df-dgr 23668  df-quot 23767  df-aa 23791
This theorem is referenced by:  aaliou2b  23817
  Copyright terms: Public domain W3C validator