Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem5 Structured version   Visualization version   GIF version

Theorem aaliou3lem5 24301
 Description: Lemma for aaliou3 24305. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem5 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐   𝐴,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem5
StepHypRef Expression
1 oveq2 6821 . . . 4 (𝑐 = 𝐴 → (1...𝑐) = (1...𝐴))
21sumeq1d 14630 . . 3 (𝑐 = 𝐴 → Σ𝑏 ∈ (1...𝑐)(𝐹𝑏) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
3 aaliou3lem.e . . 3 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
4 sumex 14617 . . 3 Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ V
52, 3, 4fvmpt 6444 . 2 (𝐴 ∈ ℕ → (𝐻𝐴) = Σ𝑏 ∈ (1...𝐴)(𝐹𝑏))
6 fzfid 12966 . . 3 (𝐴 ∈ ℕ → (1...𝐴) ∈ Fin)
7 elfznn 12563 . . . . 5 (𝑏 ∈ (1...𝐴) → 𝑏 ∈ ℕ)
87adantl 473 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → 𝑏 ∈ ℕ)
9 fveq2 6352 . . . . . . . 8 (𝑎 = 𝑏 → (!‘𝑎) = (!‘𝑏))
109negeqd 10467 . . . . . . 7 (𝑎 = 𝑏 → -(!‘𝑎) = -(!‘𝑏))
1110oveq2d 6829 . . . . . 6 (𝑎 = 𝑏 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑏)))
12 aaliou3lem.c . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
13 ovex 6841 . . . . . 6 (2↑-(!‘𝑏)) ∈ V
1411, 12, 13fvmpt 6444 . . . . 5 (𝑏 ∈ ℕ → (𝐹𝑏) = (2↑-(!‘𝑏)))
15 2rp 12030 . . . . . . 7 2 ∈ ℝ+
16 nnnn0 11491 . . . . . . . . . 10 (𝑏 ∈ ℕ → 𝑏 ∈ ℕ0)
17 faccl 13264 . . . . . . . . . 10 (𝑏 ∈ ℕ0 → (!‘𝑏) ∈ ℕ)
1816, 17syl 17 . . . . . . . . 9 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℕ)
1918nnzd 11673 . . . . . . . 8 (𝑏 ∈ ℕ → (!‘𝑏) ∈ ℤ)
2019znegcld 11676 . . . . . . 7 (𝑏 ∈ ℕ → -(!‘𝑏) ∈ ℤ)
21 rpexpcl 13073 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝑏) ∈ ℤ) → (2↑-(!‘𝑏)) ∈ ℝ+)
2215, 20, 21sylancr 698 . . . . . 6 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ+)
2322rpred 12065 . . . . 5 (𝑏 ∈ ℕ → (2↑-(!‘𝑏)) ∈ ℝ)
2414, 23eqeltrd 2839 . . . 4 (𝑏 ∈ ℕ → (𝐹𝑏) ∈ ℝ)
258, 24syl 17 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (1...𝐴)) → (𝐹𝑏) ∈ ℝ)
266, 25fsumrecl 14664 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (1...𝐴)(𝐹𝑏) ∈ ℝ)
275, 26eqeltrd 2839 1 (𝐴 ∈ ℕ → (𝐻𝐴) ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6813  ℝcr 10127  1c1 10129  -cneg 10459  ℕcn 11212  2c2 11262  ℕ0cn0 11484  ℤcz 11569  ℝ+crp 12025  ...cfz 12519  ↑cexp 13054  !cfa 13254  Σcsu 14615 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-fac 13255  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616 This theorem is referenced by:  aaliou3lem7  24303  aaliou3lem9  24304
 Copyright terms: Public domain W3C validator