MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem9 Structured version   Visualization version   GIF version

Theorem aaliou3lem9 24941
Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem9 ¬ 𝐿 ∈ 𝔸
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)

Proof of Theorem aaliou3lem9
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aaliou3lem8 24936 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑒 ∈ ℕ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
2 aaliou3lem.c . . . . . . . . 9 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
3 aaliou3lem.d . . . . . . . . 9 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
4 aaliou3lem.e . . . . . . . . 9 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
52, 3, 4aaliou3lem6 24939 . . . . . . . 8 (𝑒 ∈ ℕ → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
65ad2antrl 726 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ)
7 2nn 11713 . . . . . . . 8 2 ∈ ℕ
8 nnnn0 11907 . . . . . . . . . 10 (𝑒 ∈ ℕ → 𝑒 ∈ ℕ0)
98ad2antrl 726 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑒 ∈ ℕ0)
10 faccl 13646 . . . . . . . . 9 (𝑒 ∈ ℕ0 → (!‘𝑒) ∈ ℕ)
11 nnnn0 11907 . . . . . . . . 9 ((!‘𝑒) ∈ ℕ → (!‘𝑒) ∈ ℕ0)
129, 10, 113syl 18 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘𝑒) ∈ ℕ0)
13 nnexpcl 13445 . . . . . . . 8 ((2 ∈ ℕ ∧ (!‘𝑒) ∈ ℕ0) → (2↑(!‘𝑒)) ∈ ℕ)
147, 12, 13sylancr 589 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℕ)
152, 3, 4aaliou3lem5 24938 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ → (𝐻𝑒) ∈ ℝ)
1615ad2antrl 726 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℝ)
1716recnd 10671 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ∈ ℂ)
1814nncnd 11656 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℂ)
1914nnne0d 11690 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ≠ 0)
2017, 18, 19divcan4d 11424 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) = (𝐻𝑒))
212, 3, 4aaliou3lem7 24940 . . . . . . . . . . . 12 (𝑒 ∈ ℕ → ((𝐻𝑒) ≠ 𝐿 ∧ (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1))))))
2221simpld 497 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (𝐻𝑒) ≠ 𝐿)
2322ad2antrl 726 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐻𝑒) ≠ 𝐿)
2420, 23eqnetrd 3085 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ≠ 𝐿)
2524necomd 3073 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝐿 ≠ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
2625neneqd 3023 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
272, 3, 4aaliou3lem4 24937 . . . . . . . . . . 11 𝐿 ∈ ℝ
2814nnred 11655 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑(!‘𝑒)) ∈ ℝ)
2916, 28remulcld 10673 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℝ)
3029, 14nndivred 11694 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ)
31 resubcl 10952 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∈ ℝ) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3227, 30, 31sylancr 589 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℝ)
3332recnd 10671 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) ∈ ℂ)
3433abscld 14798 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ∈ ℝ)
35 simplr 767 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑏 ∈ ℝ+)
36 nnnn0 11907 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ0)
3736ad2antrr 724 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → 𝑎 ∈ ℕ0)
3814, 37nnexpcld 13609 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℕ)
3938nnrpd 12432 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ((2↑(!‘𝑒))↑𝑎) ∈ ℝ+)
4035, 39rpdivcld 12451 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ+)
4140rpred 12434 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝑏 / ((2↑(!‘𝑒))↑𝑎)) ∈ ℝ)
42 2rp 12397 . . . . . . . . . . 11 2 ∈ ℝ+
43 peano2nn0 11940 . . . . . . . . . . . . . 14 (𝑒 ∈ ℕ0 → (𝑒 + 1) ∈ ℕ0)
44 faccl 13646 . . . . . . . . . . . . . 14 ((𝑒 + 1) ∈ ℕ0 → (!‘(𝑒 + 1)) ∈ ℕ)
459, 43, 443syl 18 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (!‘(𝑒 + 1)) ∈ ℕ)
46 nnz 12007 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℕ → (!‘(𝑒 + 1)) ∈ ℤ)
47 znegcl 12020 . . . . . . . . . . . . 13 ((!‘(𝑒 + 1)) ∈ ℤ → -(!‘(𝑒 + 1)) ∈ ℤ)
4845, 46, 473syl 18 . . . . . . . . . . . 12 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → -(!‘(𝑒 + 1)) ∈ ℤ)
49 rpexpcl 13451 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ -(!‘(𝑒 + 1)) ∈ ℤ) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
5042, 48, 49sylancr 589 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2↑-(!‘(𝑒 + 1))) ∈ ℝ+)
51 rpmulcl 12415 . . . . . . . . . . 11 ((2 ∈ ℝ+ ∧ (2↑-(!‘(𝑒 + 1))) ∈ ℝ+) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
5242, 50, 51sylancr 589 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ+)
5352rpred 12434 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ∈ ℝ)
5420oveq2d 7174 . . . . . . . . . . 11 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))) = (𝐿 − (𝐻𝑒)))
5554fveq2d 6676 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) = (abs‘(𝐿 − (𝐻𝑒))))
5621simprd 498 . . . . . . . . . . 11 (𝑒 ∈ ℕ → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5756ad2antrl 726 . . . . . . . . . 10 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (𝐻𝑒))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
5855, 57eqbrtrd 5090 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (2 · (2↑-(!‘(𝑒 + 1)))))
59 simprr 771 . . . . . . . . 9 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6034, 53, 41, 58, 59letrd 10799 . . . . . . . 8 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
6134, 41, 60lensymd 10793 . . . . . . 7 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
62 oveq1 7165 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝑓 / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))
6362eqeq2d 2834 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 = (𝑓 / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6463notbid 320 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ 𝐿 = (𝑓 / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6562oveq2d 7174 . . . . . . . . . . . 12 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (𝐿 − (𝑓 / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))
6665fveq2d 6676 . . . . . . . . . . 11 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (abs‘(𝐿 − (𝑓 / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))
6766breq2d 5080 . . . . . . . . . 10 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6867notbid 320 . . . . . . . . 9 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))) ↔ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))))
6964, 68anbi12d 632 . . . . . . . 8 (𝑓 = ((𝐻𝑒) · (2↑(!‘𝑒))) → ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))))))
70 oveq2 7166 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))
7170eqeq2d 2834 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → (𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7271notbid 320 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ↔ ¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
73 oveq1 7165 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝑑𝑎) = ((2↑(!‘𝑒))↑𝑎))
7473oveq2d 7174 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (𝑏 / (𝑑𝑎)) = (𝑏 / ((2↑(!‘𝑒))↑𝑎)))
7570oveq2d 7174 . . . . . . . . . . . 12 (𝑑 = (2↑(!‘𝑒)) → (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)) = (𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))
7675fveq2d 6676 . . . . . . . . . . 11 (𝑑 = (2↑(!‘𝑒)) → (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) = (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))
7774, 76breq12d 5081 . . . . . . . . . 10 (𝑑 = (2↑(!‘𝑒)) → ((𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7877notbid 320 . . . . . . . . 9 (𝑑 = (2↑(!‘𝑒)) → (¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑))) ↔ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒)))))))
7972, 78anbi12d 632 . . . . . . . 8 (𝑑 = (2↑(!‘𝑒)) → ((¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / 𝑑)))) ↔ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))))
8069, 79rspc2ev 3637 . . . . . . 7 ((((𝐻𝑒) · (2↑(!‘𝑒))) ∈ ℤ ∧ (2↑(!‘𝑒)) ∈ ℕ ∧ (¬ 𝐿 = (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))) ∧ ¬ (𝑏 / ((2↑(!‘𝑒))↑𝑎)) < (abs‘(𝐿 − (((𝐻𝑒) · (2↑(!‘𝑒))) / (2↑(!‘𝑒))))))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
816, 14, 26, 61, 80syl112anc 1370 . . . . . 6 (((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) ∧ (𝑒 ∈ ℕ ∧ (2 · (2↑-(!‘(𝑒 + 1)))) ≤ (𝑏 / ((2↑(!‘𝑒))↑𝑎)))) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
821, 81rexlimddv 3293 . . . . 5 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
83 pm4.56 985 . . . . . . . . 9 ((¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8483rexbii 3249 . . . . . . . 8 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
85 rexnal 3240 . . . . . . . 8 (∃𝑑 ∈ ℕ ¬ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8684, 85bitri 277 . . . . . . 7 (∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8786rexbii 3249 . . . . . 6 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
88 rexnal 3240 . . . . . 6 (∃𝑓 ∈ ℤ ¬ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
8987, 88bitri 277 . . . . 5 (∃𝑓 ∈ ℤ ∃𝑑 ∈ ℕ (¬ 𝐿 = (𝑓 / 𝑑) ∧ ¬ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))) ↔ ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9082, 89sylib 220 . . . 4 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℝ+) → ¬ ∀𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9190nrexdv 3272 . . 3 (𝑎 ∈ ℕ → ¬ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9291nrex 3271 . 2 ¬ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑))))
93 aaliou2b 24932 . 2 (𝐿 ∈ 𝔸 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℝ+𝑓 ∈ ℤ ∀𝑑 ∈ ℕ (𝐿 = (𝑓 / 𝑑) ∨ (𝑏 / (𝑑𝑎)) < (abs‘(𝐿 − (𝑓 / 𝑑)))))
9492, 93mto 199 1 ¬ 𝐿 ∈ 𝔸
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  +crp 12392  ...cfz 12895  cexp 13432  !cfa 13636  abscabs 14595  Σcsu 15044  𝔸caa 24905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-subg 18278  df-cntz 18449  df-cmn 18910  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-0p 24273  df-limc 24466  df-dv 24467  df-dvn 24468  df-cpn 24469  df-ply 24780  df-idp 24781  df-coe 24782  df-dgr 24783  df-quot 24882  df-aa 24906
This theorem is referenced by:  aaliou3  24942
  Copyright terms: Public domain W3C validator