MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem5 Structured version   Visualization version   GIF version

Theorem aalioulem5 23840
Description: Lemma for aaliou 23842. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem5 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞   𝑥,𝑁
Allowed substitution hints:   𝑁(𝑞,𝑝)

Proof of Theorem aalioulem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem4 23839 . 2 (𝜑 → ∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7 simpr 476 . . . . 5 ((𝜑𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
8 1rp 11671 . . . . 5 1 ∈ ℝ+
9 ifcl 4080 . . . . 5 ((𝑎 ∈ ℝ+ ∧ 1 ∈ ℝ+) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
107, 8, 9sylancl 693 . . . 4 ((𝜑𝑎 ∈ ℝ+) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
1110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
12 simprr 792 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
1312nnrpd 11705 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
143ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
1514nnzd 11316 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
1613, 15rpexpcld 12852 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
1711, 16rpdivcld 11724 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ+)
1817rpred 11707 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ)
19 1re 9896 . . . . . . . . . . . 12 1 ∈ ℝ
2019a1i 11 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ∈ ℝ)
214ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
22 znq 11627 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
23 qre 11628 . . . . . . . . . . . . . . . 16 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
2524adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
2621, 25resubcld 10310 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
2726recnd 9925 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
2827abscld 13972 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
2918, 20, 283jca 1235 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3029adantr 480 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3116rprecred 11718 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 / (𝑞𝑁)) ∈ ℝ)
3211rpred 11707 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ)
33 simplr 788 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+)
3433rpred 11707 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ)
35 min2 11857 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 1)
3634, 19, 35sylancl 693 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 1)
3732, 20, 16, 36lediv1dd 11765 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (1 / (𝑞𝑁)))
3814nnnn0d 11201 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
3912, 38nnexpcld 12850 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℕ)
40 1nn 10881 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
4140a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ∈ ℕ)
4239, 41nnmulcld 10918 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑞𝑁) · 1) ∈ ℕ)
4342nnge1d 10913 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ ((𝑞𝑁) · 1))
4420, 20, 16ledivmuld 11760 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((1 / (𝑞𝑁)) ≤ 1 ↔ 1 ≤ ((𝑞𝑁) · 1)))
4543, 44mpbird 246 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 / (𝑞𝑁)) ≤ 1)
4618, 31, 20, 37, 45letrd 10046 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1)
4746adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1)
48 ltle 9978 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (1 < (abs‘(𝐴 − (𝑝 / 𝑞))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4919, 28, 48sylancr 694 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 < (abs‘(𝐴 − (𝑝 / 𝑞))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
5049imp 444 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5147, 50jca 553 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
52 letr 9983 . . . . . . . . 9 (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
5330, 51, 52sylc 63 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5453olcd 407 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
55542a1d 26 . . . . . 6 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
56 pm3.21 463 . . . . . . . 8 ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)))
5756adantl 481 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)))
5833, 16rpdivcld 11724 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ+)
5958rpred 11707 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ)
6018, 59, 283jca 1235 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
6160adantr 480 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
62 min1 11856 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 𝑎)
6334, 19, 62sylancl 693 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 𝑎)
6432, 34, 16, 63lediv1dd 11765 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)))
6564anim1i 590 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
66 letr 9983 . . . . . . . . . . 11 (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6761, 65, 66sylc 63 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
6867ex 449 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6968adantr 480 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7069orim2d 881 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7157, 70imim12d 79 . . . . . 6 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7255, 71, 20, 28ltlecasei 9997 . . . . 5 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7372ralimdvva 2947 . . . 4 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
74 oveq1 6534 . . . . . . . . 9 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (𝑥 / (𝑞𝑁)) = (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)))
7574breq1d 4588 . . . . . . . 8 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → ((𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7675orbi2d 734 . . . . . . 7 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7776imbi2d 329 . . . . . 6 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ↔ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
78772ralbidv 2972 . . . . 5 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7978rspcev 3282 . . . 4 ((if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8010, 73, 79syl6an 566 . . 3 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
8180rexlimdva 3013 . 2 (𝜑 → (∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
826, 81mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  ifcif 4036   class class class wbr 4578  cfv 5790  (class class class)co 6527  cr 9792  0cc0 9793  1c1 9794   · cmul 9798   < clt 9931  cle 9932  cmin 10118   / cdiv 10536  cn 10870  cz 11213  cq 11623  +crp 11667  cexp 12680  abscabs 13771  Polycply 23689  degcdgr 23692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-rlim 14017  df-sum 14214  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-grp 17197  df-minusg 17198  df-mulg 17313  df-subg 17363  df-cntz 17522  df-cmn 17967  df-mgp 18262  df-ur 18274  df-ring 18321  df-cring 18322  df-subrg 18550  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-cmp 20948  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-0p 23188  df-limc 23381  df-dv 23382  df-dvn 23383  df-cpn 23384  df-ply 23693  df-coe 23695  df-dgr 23696
This theorem is referenced by:  aalioulem6  23841
  Copyright terms: Public domain W3C validator