MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem5 Structured version   Visualization version   GIF version

Theorem aalioulem5 24136
Description: Lemma for aaliou 24138. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem5 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞   𝑥,𝑁
Allowed substitution hints:   𝑁(𝑞,𝑝)

Proof of Theorem aalioulem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem4 24135 . 2 (𝜑 → ∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7 simpr 476 . . . . 5 ((𝜑𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
8 1rp 11874 . . . . 5 1 ∈ ℝ+
9 ifcl 4163 . . . . 5 ((𝑎 ∈ ℝ+ ∧ 1 ∈ ℝ+) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
107, 8, 9sylancl 695 . . . 4 ((𝜑𝑎 ∈ ℝ+) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
1110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
12 simprr 811 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
1312nnrpd 11908 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
143ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
1514nnzd 11519 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
1613, 15rpexpcld 13072 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
1711, 16rpdivcld 11927 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ+)
1817rpred 11910 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ)
19 1re 10077 . . . . . . . . . . . 12 1 ∈ ℝ
2019a1i 11 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ∈ ℝ)
214ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
22 znq 11830 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
23 qre 11831 . . . . . . . . . . . . . . . 16 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
2524adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
2621, 25resubcld 10496 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
2726recnd 10106 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
2827abscld 14219 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
2918, 20, 283jca 1261 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3029adantr 480 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3116rprecred 11921 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 / (𝑞𝑁)) ∈ ℝ)
3211rpred 11910 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ)
33 simplr 807 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+)
3433rpred 11910 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ)
35 min2 12059 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 1)
3634, 19, 35sylancl 695 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 1)
3732, 20, 16, 36lediv1dd 11968 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (1 / (𝑞𝑁)))
3814nnnn0d 11389 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
3912, 38nnexpcld 13070 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℕ)
40 1nn 11069 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
4140a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ∈ ℕ)
4239, 41nnmulcld 11106 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑞𝑁) · 1) ∈ ℕ)
4342nnge1d 11101 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ ((𝑞𝑁) · 1))
4420, 20, 16ledivmuld 11963 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((1 / (𝑞𝑁)) ≤ 1 ↔ 1 ≤ ((𝑞𝑁) · 1)))
4543, 44mpbird 247 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 / (𝑞𝑁)) ≤ 1)
4618, 31, 20, 37, 45letrd 10232 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1)
4746adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1)
48 ltle 10164 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (1 < (abs‘(𝐴 − (𝑝 / 𝑞))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4919, 28, 48sylancr 696 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 < (abs‘(𝐴 − (𝑝 / 𝑞))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
5049imp 444 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5147, 50jca 553 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
52 letr 10169 . . . . . . . . 9 (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
5330, 51, 52sylc 65 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5453olcd 407 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
55542a1d 26 . . . . . 6 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
56 pm3.21 463 . . . . . . . 8 ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)))
5756adantl 481 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)))
5833, 16rpdivcld 11927 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ+)
5958rpred 11910 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ)
6018, 59, 283jca 1261 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
6160adantr 480 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
62 min1 12058 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 𝑎)
6334, 19, 62sylancl 695 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 𝑎)
6432, 34, 16, 63lediv1dd 11968 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)))
6564anim1i 591 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
66 letr 10169 . . . . . . . . . . 11 (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6761, 65, 66sylc 65 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
6867ex 449 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6968adantr 480 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7069orim2d 903 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7157, 70imim12d 81 . . . . . 6 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7255, 71, 20, 28ltlecasei 10183 . . . . 5 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7372ralimdvva 2993 . . . 4 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
74 oveq1 6697 . . . . . . . . 9 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (𝑥 / (𝑞𝑁)) = (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)))
7574breq1d 4695 . . . . . . . 8 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → ((𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7675orbi2d 738 . . . . . . 7 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7776imbi2d 329 . . . . . 6 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ↔ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
78772ralbidv 3018 . . . . 5 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7978rspcev 3340 . . . 4 ((if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8010, 73, 79syl6an 567 . . 3 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
8180rexlimdva 3060 . 2 (𝜑 → (∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
826, 81mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  ifcif 4119   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  cz 11415  cq 11826  +crp 11870  cexp 12900  abscabs 14018  Polycply 23985  degcdgr 23988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-cntz 17796  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-0p 23482  df-limc 23675  df-dv 23676  df-dvn 23677  df-cpn 23678  df-ply 23989  df-coe 23991  df-dgr 23992
This theorem is referenced by:  aalioulem6  24137
  Copyright terms: Public domain W3C validator