MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem1 Structured version   Visualization version   GIF version

Theorem aannenlem1 24128
Description: Lemma for aannen 24131. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Distinct variable group:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem1
StepHypRef Expression
1 breq2 4689 . . . . . . 7 (𝑎 = 𝐴 → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ 𝐴))
2 breq2 4689 . . . . . . . 8 (𝑎 = 𝐴 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
32ralbidv 3015 . . . . . . 7 (𝑎 = 𝐴 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
41, 33anbi23d 1442 . . . . . 6 (𝑎 = 𝐴 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)))
54rabbidv 3220 . . . . 5 (𝑎 = 𝐴 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)})
65rexeqdv 3175 . . . 4 (𝑎 = 𝐴 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0))
76rabbidv 3220 . . 3 (𝑎 = 𝐴 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
8 aannenlem.a . . 3 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
9 cnex 10055 . . . 4 ℂ ∈ V
109rabex 4845 . . 3 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ V
117, 8, 10fvmpt 6321 . 2 (𝐴 ∈ ℕ0 → (𝐻𝐴) = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
12 iunrab 4599 . . 3 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0}
13 fzfi 12811 . . . . . . 7 (-𝐴...𝐴) ∈ Fin
14 fzfi 12811 . . . . . . 7 (0...𝐴) ∈ Fin
15 mapfi 8303 . . . . . . 7 (((-𝐴...𝐴) ∈ Fin ∧ (0...𝐴) ∈ Fin) → ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ Fin)
1613, 14, 15mp2an 708 . . . . . 6 ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ Fin
1716a1i 11 . . . . 5 (𝐴 ∈ ℕ0 → ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ Fin)
18 ovex 6718 . . . . . 6 ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ V
19 neeq1 2885 . . . . . . . . . . 11 (𝑑 = 𝑎 → (𝑑 ≠ 0𝑝𝑎 ≠ 0𝑝))
20 fveq2 6229 . . . . . . . . . . . 12 (𝑑 = 𝑎 → (deg‘𝑑) = (deg‘𝑎))
2120breq1d 4695 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑎) ≤ 𝐴))
22 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑑 = 𝑎 → (coeff‘𝑑) = (coeff‘𝑎))
2322fveq1d 6231 . . . . . . . . . . . . . 14 (𝑑 = 𝑎 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑎)‘𝑒))
2423fveq2d 6233 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑎)‘𝑒)))
2524breq1d 4695 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2625ralbidv 3015 . . . . . . . . . . 11 (𝑑 = 𝑎 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2719, 21, 263anbi123d 1439 . . . . . . . . . 10 (𝑑 = 𝑎 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
2827elrab 3396 . . . . . . . . 9 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
29 simp3 1083 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)
3029anim2i 592 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
3128, 30sylbi 207 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
32 0z 11426 . . . . . . . . . . . . . . 15 0 ∈ ℤ
33 eqid 2651 . . . . . . . . . . . . . . . 16 (coeff‘𝑎) = (coeff‘𝑎)
3433coef2 24032 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3532, 34mpan2 707 . . . . . . . . . . . . . 14 (𝑎 ∈ (Poly‘ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3635ad2antrl 764 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶ℤ)
3736ffnd 6084 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎) Fn ℕ0)
3835adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (coeff‘𝑎):ℕ0⟶ℤ)
3938ffvelrnda 6399 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℤ)
4039zred 11520 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℝ)
41 nn0re 11339 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4241ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℝ)
4340, 42absled 14213 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
44 nn0z 11438 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
4544ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℤ)
4645znegcld 11522 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → -𝐴 ∈ ℤ)
47 elfz 12370 . . . . . . . . . . . . . . . . . 18 ((((coeff‘𝑎)‘𝑒) ∈ ℤ ∧ -𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4839, 46, 45, 47syl3anc 1366 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4943, 48bitr4d 271 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5049biimpd 219 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5150ralimdva 2991 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5251impr 648 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴))
53 fnfvrnss 6430 . . . . . . . . . . . . 13 (((coeff‘𝑎) Fn ℕ0 ∧ ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
5437, 52, 53syl2anc 694 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
55 df-f 5930 . . . . . . . . . . . 12 ((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ↔ ((coeff‘𝑎) Fn ℕ0 ∧ ran (coeff‘𝑎) ⊆ (-𝐴...𝐴)))
5637, 54, 55sylanbrc 699 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶(-𝐴...𝐴))
57 fz0ssnn0 12473 . . . . . . . . . . 11 (0...𝐴) ⊆ ℕ0
58 fssres 6108 . . . . . . . . . . 11 (((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ∧ (0...𝐴) ⊆ ℕ0) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
5956, 57, 58sylancl 695 . . . . . . . . . 10 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
60 ovex 6718 . . . . . . . . . . 11 (-𝐴...𝐴) ∈ V
61 ovex 6718 . . . . . . . . . . 11 (0...𝐴) ∈ V
6260, 61elmap 7928 . . . . . . . . . 10 (((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ↔ ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
6359, 62sylibr 224 . . . . . . . . 9 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑𝑚 (0...𝐴)))
6463ex 449 . . . . . . . 8 (𝐴 ∈ ℕ0 → ((𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑𝑚 (0...𝐴))))
6531, 64syl5 34 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑𝑚 (0...𝐴))))
66 simp2 1082 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → (deg‘𝑎) ≤ 𝐴)
6766anim2i 592 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
6828, 67sylbi 207 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
69 neeq1 2885 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 ≠ 0𝑝𝑏 ≠ 0𝑝))
70 fveq2 6229 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (deg‘𝑑) = (deg‘𝑏))
7170breq1d 4695 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑏) ≤ 𝐴))
72 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (coeff‘𝑑) = (coeff‘𝑏))
7372fveq1d 6231 . . . . . . . . . . . . . 14 (𝑑 = 𝑏 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑏)‘𝑒))
7473fveq2d 6233 . . . . . . . . . . . . 13 (𝑑 = 𝑏 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑏)‘𝑒)))
7574breq1d 4695 . . . . . . . . . . . 12 (𝑑 = 𝑏 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7675ralbidv 3015 . . . . . . . . . . 11 (𝑑 = 𝑏 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7769, 71, 763anbi123d 1439 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
7877elrab 3396 . . . . . . . . 9 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
79 simp2 1082 . . . . . . . . . 10 ((𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴) → (deg‘𝑏) ≤ 𝐴)
8079anim2i 592 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)) → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
8178, 80sylbi 207 . . . . . . . 8 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
82 simplll 813 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 ∈ (Poly‘ℤ))
83 plyf 23999 . . . . . . . . . . . . 13 (𝑎 ∈ (Poly‘ℤ) → 𝑎:ℂ⟶ℂ)
84 ffn 6083 . . . . . . . . . . . . 13 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
8582, 83, 843syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 Fn ℂ)
86 simplrl 817 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 ∈ (Poly‘ℤ))
87 plyf 23999 . . . . . . . . . . . . 13 (𝑏 ∈ (Poly‘ℤ) → 𝑏:ℂ⟶ℂ)
88 ffn 6083 . . . . . . . . . . . . 13 (𝑏:ℂ⟶ℂ → 𝑏 Fn ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 Fn ℂ)
90 simplrr 818 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9291fveq1d 6231 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑))
93 fvres 6245 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
9493adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
95 fvres 6245 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9695adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9792, 94, 963eqtr3d 2693 . . . . . . . . . . . . . . 15 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎)‘𝑑) = ((coeff‘𝑏)‘𝑑))
9897oveq1d 6705 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = (((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
9998sumeq2dv 14477 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
100 simp-4l 823 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑎 ∈ (Poly‘ℤ))
101 simp-4r 824 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ≤ 𝐴)
102 dgrcl 24034 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
103 nn0z 11438 . . . . . . . . . . . . . . . . 17 ((deg‘𝑎) ∈ ℕ0 → (deg‘𝑎) ∈ ℤ)
104100, 102, 1033syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ∈ ℤ)
105 simplrl 817 . . . . . . . . . . . . . . . . 17 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℕ0)
106105nn0zd 11518 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℤ)
107 eluz 11739 . . . . . . . . . . . . . . . 16 (((deg‘𝑎) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
108104, 106, 107syl2anc 694 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
109101, 108mpbird 247 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑎)))
110 simpr 476 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑐 ∈ ℂ)
111 eqid 2651 . . . . . . . . . . . . . . 15 (deg‘𝑎) = (deg‘𝑎)
11233, 111coeid3 24041 . . . . . . . . . . . . . 14 ((𝑎 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑎)) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
113100, 109, 110, 112syl3anc 1366 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
114 simp1rl 1146 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
1151143expa 1284 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
116 simplrr 818 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → (deg‘𝑏) ≤ 𝐴)
117116adantr 480 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ≤ 𝐴)
118 dgrcl 24034 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Poly‘ℤ) → (deg‘𝑏) ∈ ℕ0)
119 nn0z 11438 . . . . . . . . . . . . . . . . 17 ((deg‘𝑏) ∈ ℕ0 → (deg‘𝑏) ∈ ℤ)
120115, 118, 1193syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ∈ ℤ)
121 eluz 11739 . . . . . . . . . . . . . . . 16 (((deg‘𝑏) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
122120, 106, 121syl2anc 694 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
123117, 122mpbird 247 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑏)))
124 eqid 2651 . . . . . . . . . . . . . . 15 (coeff‘𝑏) = (coeff‘𝑏)
125 eqid 2651 . . . . . . . . . . . . . . 15 (deg‘𝑏) = (deg‘𝑏)
126124, 125coeid3 24041 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑏)) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
127115, 123, 110, 126syl3anc 1366 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
12899, 113, 1273eqtr4d 2695 . . . . . . . . . . . 12 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = (𝑏𝑐))
12985, 89, 128eqfnfvd 6354 . . . . . . . . . . 11 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 = 𝑏)
130129expr 642 . . . . . . . . . 10 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) → 𝑎 = 𝑏))
131 fveq2 6229 . . . . . . . . . . 11 (𝑎 = 𝑏 → (coeff‘𝑎) = (coeff‘𝑏))
132131reseq1d 5427 . . . . . . . . . 10 (𝑎 = 𝑏 → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
133130, 132impbid1 215 . . . . . . . . 9 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏))
134133expcom 450 . . . . . . . 8 (𝐴 ∈ ℕ0 → (((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13568, 81, 134syl2ani 689 . . . . . . 7 (𝐴 ∈ ℕ0 → ((𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∧ 𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)}) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13665, 135dom2d 8038 . . . . . 6 (𝐴 ∈ ℕ0 → (((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ V → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑𝑚 (0...𝐴))))
13718, 136mpi 20 . . . . 5 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑𝑚 (0...𝐴)))
138 domfi 8222 . . . . 5 ((((-𝐴...𝐴) ↑𝑚 (0...𝐴)) ∈ Fin ∧ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑𝑚 (0...𝐴))) → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
13917, 137, 138syl2anc 694 . . . 4 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
140 neeq1 2885 . . . . . . . . 9 (𝑑 = 𝑐 → (𝑑 ≠ 0𝑝𝑐 ≠ 0𝑝))
141 fveq2 6229 . . . . . . . . . 10 (𝑑 = 𝑐 → (deg‘𝑑) = (deg‘𝑐))
142141breq1d 4695 . . . . . . . . 9 (𝑑 = 𝑐 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑐) ≤ 𝐴))
143 fveq2 6229 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → (coeff‘𝑑) = (coeff‘𝑐))
144143fveq1d 6231 . . . . . . . . . . . 12 (𝑑 = 𝑐 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑐)‘𝑒))
145144fveq2d 6233 . . . . . . . . . . 11 (𝑑 = 𝑐 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑐)‘𝑒)))
146145breq1d 4695 . . . . . . . . . 10 (𝑑 = 𝑐 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
147146ralbidv 3015 . . . . . . . . 9 (𝑑 = 𝑐 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
148140, 142, 1473anbi123d 1439 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
149148elrab 3396 . . . . . . 7 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
150 simp1 1081 . . . . . . . 8 ((𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴) → 𝑐 ≠ 0𝑝)
151150anim2i 592 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)) → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
152149, 151sylbi 207 . . . . . 6 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
153 plyf 23999 . . . . . . . . . . . . 13 (𝑐 ∈ (Poly‘ℤ) → 𝑐:ℂ⟶ℂ)
154153ffnd 6084 . . . . . . . . . . . 12 (𝑐 ∈ (Poly‘ℤ) → 𝑐 Fn ℂ)
155154adantr 480 . . . . . . . . . . 11 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → 𝑐 Fn ℂ)
156 fniniseg 6378 . . . . . . . . . . 11 (𝑐 Fn ℂ → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
157155, 156syl 17 . . . . . . . . . 10 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
158 fveq2 6229 . . . . . . . . . . . 12 (𝑏 = 𝑎 → (𝑐𝑏) = (𝑐𝑎))
159158eqeq1d 2653 . . . . . . . . . . 11 (𝑏 = 𝑎 → ((𝑐𝑏) = 0 ↔ (𝑐𝑎) = 0))
160159elrab 3396 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0))
161157, 160syl6rbbr 279 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ 𝑎 ∈ (𝑐 “ {0})))
162161eqrdv 2649 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = (𝑐 “ {0}))
163 eqid 2651 . . . . . . . . . 10 (𝑐 “ {0}) = (𝑐 “ {0})
164163fta1 24108 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → ((𝑐 “ {0}) ∈ Fin ∧ (#‘(𝑐 “ {0})) ≤ (deg‘𝑐)))
165164simpld 474 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑐 “ {0}) ∈ Fin)
166162, 165eqeltrd 2730 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
167166a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
168152, 167syl5 34 . . . . 5 (𝐴 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
169168ralrimiv 2994 . . . 4 (𝐴 ∈ ℕ0 → ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
170 iunfi 8295 . . . 4 (({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin ∧ ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin) → 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
171139, 169, 170syl2anc 694 . . 3 (𝐴 ∈ ℕ0 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
17212, 171syl5eqelr 2735 . 2 (𝐴 ∈ ℕ0 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ Fin)
17311, 172eqeltrd 2730 1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  wss 3607  {csn 4210   ciun 4552   class class class wbr 4685  cmpt 4762  ccnv 5142  ran crn 5144  cres 5145  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  cdom 7995  Fincfn 7997  cc 9972  cr 9973  0cc0 9974   · cmul 9979  cle 10113  -cneg 10305  0cn0 11330  cz 11415  cuz 11725  ...cfz 12364  cexp 12900  #chash 13157  abscabs 14018  Σcsu 14460  0𝑝c0p 23481  Polycply 23985  coeffccoe 23987  degcdgr 23988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-0p 23482  df-ply 23989  df-idp 23990  df-coe 23991  df-dgr 23992  df-quot 24091
This theorem is referenced by:  aannenlem3  24130
  Copyright terms: Public domain W3C validator