![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ab0orv | Structured version Visualization version GIF version |
Description: The class builder of a wff not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) |
Ref | Expression |
---|---|
ab0orv | ⊢ ({𝑥 ∣ 𝜑} = ∅ ∨ {𝑥 ∣ 𝜑} = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | dfnf5 3985 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = ∅ ∨ {𝑥 ∣ 𝜑} = V)) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ∨ {𝑥 ∣ 𝜑} = V) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 = wceq 1523 Ⅎwnf 1748 {cab 2637 Vcvv 3231 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |