Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelth2 Structured version   Visualization version   GIF version

Theorem abelth2 24241
 Description: Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth2.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth2.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth2.3 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelth2 (𝜑𝐹 ∈ ((0[,]1)–cn→ℂ))
Distinct variable groups:   𝑥,𝑛,𝐴   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem abelth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 unitssre 12357 . . . . . . 7 (0[,]1) ⊆ ℝ
2 ax-resscn 10031 . . . . . . 7 ℝ ⊆ ℂ
31, 2sstri 3645 . . . . . 6 (0[,]1) ⊆ ℂ
43a1i 11 . . . . 5 (𝜑 → (0[,]1) ⊆ ℂ)
5 1re 10077 . . . . . . . 8 1 ∈ ℝ
6 simpr 476 . . . . . . . . . 10 ((𝜑𝑧 ∈ (0[,]1)) → 𝑧 ∈ (0[,]1))
7 0re 10078 . . . . . . . . . . 11 0 ∈ ℝ
87, 5elicc2i 12277 . . . . . . . . . 10 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
96, 8sylib 208 . . . . . . . . 9 ((𝜑𝑧 ∈ (0[,]1)) → (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
109simp1d 1093 . . . . . . . 8 ((𝜑𝑧 ∈ (0[,]1)) → 𝑧 ∈ ℝ)
11 resubcl 10383 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 − 𝑧) ∈ ℝ)
125, 10, 11sylancr 696 . . . . . . 7 ((𝜑𝑧 ∈ (0[,]1)) → (1 − 𝑧) ∈ ℝ)
1312leidd 10632 . . . . . 6 ((𝜑𝑧 ∈ (0[,]1)) → (1 − 𝑧) ≤ (1 − 𝑧))
14 1red 10093 . . . . . . 7 ((𝜑𝑧 ∈ (0[,]1)) → 1 ∈ ℝ)
159simp3d 1095 . . . . . . 7 ((𝜑𝑧 ∈ (0[,]1)) → 𝑧 ≤ 1)
1610, 14, 15abssubge0d 14214 . . . . . 6 ((𝜑𝑧 ∈ (0[,]1)) → (abs‘(1 − 𝑧)) = (1 − 𝑧))
179simp2d 1094 . . . . . . . . . 10 ((𝜑𝑧 ∈ (0[,]1)) → 0 ≤ 𝑧)
1810, 17absidd 14205 . . . . . . . . 9 ((𝜑𝑧 ∈ (0[,]1)) → (abs‘𝑧) = 𝑧)
1918oveq2d 6706 . . . . . . . 8 ((𝜑𝑧 ∈ (0[,]1)) → (1 − (abs‘𝑧)) = (1 − 𝑧))
2019oveq2d 6706 . . . . . . 7 ((𝜑𝑧 ∈ (0[,]1)) → (1 · (1 − (abs‘𝑧))) = (1 · (1 − 𝑧)))
2112recnd 10106 . . . . . . . 8 ((𝜑𝑧 ∈ (0[,]1)) → (1 − 𝑧) ∈ ℂ)
2221mulid2d 10096 . . . . . . 7 ((𝜑𝑧 ∈ (0[,]1)) → (1 · (1 − 𝑧)) = (1 − 𝑧))
2320, 22eqtrd 2685 . . . . . 6 ((𝜑𝑧 ∈ (0[,]1)) → (1 · (1 − (abs‘𝑧))) = (1 − 𝑧))
2413, 16, 233brtr4d 4717 . . . . 5 ((𝜑𝑧 ∈ (0[,]1)) → (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧))))
254, 24ssrabdv 3714 . . . 4 (𝜑 → (0[,]1) ⊆ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))})
2625resmptd 5487 . . 3 (𝜑 → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (0[,]1)) = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))))
27 abelth2.3 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
2826, 27syl6eqr 2703 . 2 (𝜑 → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (0[,]1)) = 𝐹)
29 abelth2.1 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
30 abelth2.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
31 1red 10093 . . . 4 (𝜑 → 1 ∈ ℝ)
32 0le1 10589 . . . . 5 0 ≤ 1
3332a1i 11 . . . 4 (𝜑 → 0 ≤ 1)
34 eqid 2651 . . . 4 {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))}
35 eqid 2651 . . . 4 (𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) = (𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
3629, 30, 31, 33, 34, 35abelth 24240 . . 3 (𝜑 → (𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ∈ ({𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))}–cn→ℂ))
37 rescncf 22747 . . 3 ((0[,]1) ⊆ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ∈ ({𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))}–cn→ℂ) → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ)))
3825, 36, 37sylc 65 . 2 (𝜑 → ((𝑥 ∈ {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (1 · (1 − (abs‘𝑧)))} ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛))) ↾ (0[,]1)) ∈ ((0[,]1)–cn→ℂ))
3928, 38eqeltrrd 2731 1 (𝜑𝐹 ∈ ((0[,]1)–cn→ℂ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  {crab 2945   ⊆ wss 3607   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143   ↾ cres 5145  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   ≤ cle 10113   − cmin 10304  ℕ0cn0 11330  [,]cicc 12216  seqcseq 12841  ↑cexp 12900  abscabs 14018   ⇝ cli 14259  Σcsu 14460  –cn→ccncf 22726 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cn 21079  df-cnp 21080  df-t1 21166  df-haus 21167  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-ulm 24176 This theorem is referenced by:  leibpi  24714
 Copyright terms: Public domain W3C validator