MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem2 Structured version   Visualization version   GIF version

Theorem abelthlem2 23907
Description: Lemma for abelth 23916. The peculiar region 𝑆, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
Assertion
Ref Expression
abelthlem2 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Distinct variable groups:   𝑧,𝑀   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)

Proof of Theorem abelthlem2
StepHypRef Expression
1 abelth.3 . 2 (𝜑𝑀 ∈ ℝ)
2 abelth.4 . 2 (𝜑 → 0 ≤ 𝑀)
3 1cnd 9912 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ ℂ)
4 0le0 10957 . . . . 5 0 ≤ 0
5 simpl 471 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℝ)
65recnd 9924 . . . . . 6 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑀 ∈ ℂ)
76mul01d 10086 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑀 · 0) = 0)
84, 7syl5breqr 4615 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 0 ≤ (𝑀 · 0))
9 oveq2 6535 . . . . . . . 8 (𝑧 = 1 → (1 − 𝑧) = (1 − 1))
10 1m1e0 10936 . . . . . . . 8 (1 − 1) = 0
119, 10syl6eq 2659 . . . . . . 7 (𝑧 = 1 → (1 − 𝑧) = 0)
1211abs00bd 13825 . . . . . 6 (𝑧 = 1 → (abs‘(1 − 𝑧)) = 0)
13 fveq2 6088 . . . . . . . . . 10 (𝑧 = 1 → (abs‘𝑧) = (abs‘1))
14 abs1 13831 . . . . . . . . . 10 (abs‘1) = 1
1513, 14syl6eq 2659 . . . . . . . . 9 (𝑧 = 1 → (abs‘𝑧) = 1)
1615oveq2d 6543 . . . . . . . 8 (𝑧 = 1 → (1 − (abs‘𝑧)) = (1 − 1))
1716, 10syl6eq 2659 . . . . . . 7 (𝑧 = 1 → (1 − (abs‘𝑧)) = 0)
1817oveq2d 6543 . . . . . 6 (𝑧 = 1 → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 · 0))
1912, 18breq12d 4590 . . . . 5 (𝑧 = 1 → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ 0 ≤ (𝑀 · 0)))
20 abelth.5 . . . . 5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
2119, 20elrab2 3332 . . . 4 (1 ∈ 𝑆 ↔ (1 ∈ ℂ ∧ 0 ≤ (𝑀 · 0)))
223, 8, 21sylanbrc 694 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 1 ∈ 𝑆)
23 velsn 4140 . . . . . . . . . 10 (𝑧 ∈ {1} ↔ 𝑧 = 1)
2423necon3bbii 2828 . . . . . . . . 9 𝑧 ∈ {1} ↔ 𝑧 ≠ 1)
25 simprll 797 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ ℂ)
26 0cn 9888 . . . . . . . . . . . . . . 15 0 ∈ ℂ
27 eqid 2609 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
2827cnmetdval 22316 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
2925, 26, 28sylancl 692 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘(𝑧 − 0)))
3025subid1d 10232 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 − 0) = 𝑧)
3130fveq2d 6092 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 0)) = (abs‘𝑧))
3229, 31eqtrd 2643 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) = (abs‘𝑧))
33 simprlr 798 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))
34 ax-1cn 9850 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
35 subcl 10131 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − 𝑧) ∈ ℂ)
3634, 25, 35sylancr 693 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ∈ ℂ)
3736abscld 13969 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(1 − 𝑧)) ∈ ℝ)
38 simpll 785 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℝ)
39 1re 9895 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
4025abscld 13969 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℝ)
41 resubcl 10196 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ (abs‘𝑧) ∈ ℝ) → (1 − (abs‘𝑧)) ∈ ℝ)
4239, 40, 41sylancr 693 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − (abs‘𝑧)) ∈ ℝ)
4338, 42remulcld 9926 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) ∈ ℝ)
4437, 43lenltd 10034 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ ¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
4533, 44mpbid 220 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)))
467adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) = 0)
47 simprr 791 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ≠ 1)
4847necomd 2836 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ 𝑧)
49 subeq0 10158 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
5049necon3bid 2825 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
5134, 25, 50sylancr 693 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
5248, 51mpbird 245 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 − 𝑧) ≠ 0)
53 absgt0 13858 . . . . . . . . . . . . . . . . . . . 20 ((1 − 𝑧) ∈ ℂ → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
5436, 53syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((1 − 𝑧) ≠ 0 ↔ 0 < (abs‘(1 − 𝑧))))
5552, 54mpbid 220 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (abs‘(1 − 𝑧)))
5646, 55eqbrtrd 4599 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 0) < (abs‘(1 − 𝑧)))
57 oveq2 6535 . . . . . . . . . . . . . . . . . . . 20 (1 = (abs‘𝑧) → (1 − 1) = (1 − (abs‘𝑧)))
5810, 57syl5eqr 2657 . . . . . . . . . . . . . . . . . . 19 (1 = (abs‘𝑧) → 0 = (1 − (abs‘𝑧)))
5958oveq2d 6543 . . . . . . . . . . . . . . . . . 18 (1 = (abs‘𝑧) → (𝑀 · 0) = (𝑀 · (1 − (abs‘𝑧))))
6059breq1d 4587 . . . . . . . . . . . . . . . . 17 (1 = (abs‘𝑧) → ((𝑀 · 0) < (abs‘(1 − 𝑧)) ↔ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
6156, 60syl5ibcom 233 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 = (abs‘𝑧) → (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧))))
6261necon3bd 2795 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (¬ (𝑀 · (1 − (abs‘𝑧))) < (abs‘(1 − 𝑧)) → 1 ≠ (abs‘𝑧)))
6345, 62mpd 15 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ≠ (abs‘𝑧))
64 1red 9911 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℝ)
65 resubcl 10196 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑧) − 1) ∈ ℝ)
6640, 39, 65sylancl 692 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ∈ ℝ)
6714oveq2i 6538 . . . . . . . . . . . . . . . . . . . . . . 23 ((abs‘𝑧) − (abs‘1)) = ((abs‘𝑧) − 1)
68 abs2dif 13866 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
6925, 34, 68sylancl 692 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − (abs‘1)) ≤ (abs‘(𝑧 − 1)))
7067, 69syl5eqbrr 4613 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(𝑧 − 1)))
71 abssub 13860 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
7225, 34, 71sylancl 692 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘(𝑧 − 1)) = (abs‘(1 − 𝑧)))
7370, 72breqtrd 4603 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (abs‘(1 − 𝑧)))
7466, 37, 43, 73, 33letrd 10045 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))))
7540, 64, 43lesubaddd 10473 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((abs‘𝑧) − 1) ≤ (𝑀 · (1 − (abs‘𝑧))) ↔ (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1)))
7674, 75mpbid 220 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 · (1 − (abs‘𝑧))) + 1))
776adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 ∈ ℂ)
78 1cnd 9912 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 1 ∈ ℂ)
7938, 40remulcld 9926 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℝ)
8079recnd 9924 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (abs‘𝑧)) ∈ ℂ)
8177, 78, 80addsubd 10264 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
8240recnd 9924 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ∈ ℂ)
8377, 78, 82subdid 10336 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = ((𝑀 · 1) − (𝑀 · (abs‘𝑧))))
8477mulid1d 9913 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · 1) = 𝑀)
8584oveq1d 6542 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · 1) − (𝑀 · (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
8683, 85eqtrd 2643 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 · (1 − (abs‘𝑧))) = (𝑀 − (𝑀 · (abs‘𝑧))))
8786oveq1d 6542 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (1 − (abs‘𝑧))) + 1) = ((𝑀 − (𝑀 · (abs‘𝑧))) + 1))
8881, 87eqtr4d 2646 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) − (𝑀 · (abs‘𝑧))) = ((𝑀 · (1 − (abs‘𝑧))) + 1))
8976, 88breqtrrd 4605 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧))))
90 peano2re 10060 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
9138, 90syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℝ)
9279, 40, 91leaddsub2d 10478 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1) ↔ (abs‘𝑧) ≤ ((𝑀 + 1) − (𝑀 · (abs‘𝑧)))))
9389, 92mpbird 245 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)) ≤ (𝑀 + 1))
9477, 78, 82adddird 9921 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) = ((𝑀 · (abs‘𝑧)) + (1 · (abs‘𝑧))))
9582mulid2d 9914 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (1 · (abs‘𝑧)) = (abs‘𝑧))
9695oveq2d 6543 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 · (abs‘𝑧)) + (1 · (abs‘𝑧))) = ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)))
9794, 96eqtrd 2643 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) = ((𝑀 · (abs‘𝑧)) + (abs‘𝑧)))
9891recnd 9924 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑀 + 1) ∈ ℂ)
9998mulid1d 9913 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · 1) = (𝑀 + 1))
10093, 97, 993brtr4d 4609 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1))
101 0red 9897 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ∈ ℝ)
102 simplr 787 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 ≤ 𝑀)
10338ltp1d 10803 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑀 < (𝑀 + 1))
104101, 38, 91, 102, 103lelttrd 10046 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 0 < (𝑀 + 1))
105 lemul2 10725 . . . . . . . . . . . . . . . . 17 (((abs‘𝑧) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑀 + 1) ∈ ℝ ∧ 0 < (𝑀 + 1))) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
10640, 64, 91, 104, 105syl112anc 1321 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) ≤ 1 ↔ ((𝑀 + 1) · (abs‘𝑧)) ≤ ((𝑀 + 1) · 1)))
107100, 106mpbird 245 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) ≤ 1)
10840, 64, 107leltned 10041 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → ((abs‘𝑧) < 1 ↔ 1 ≠ (abs‘𝑧)))
10963, 108mpbird 245 . . . . . . . . . . . . 13 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (abs‘𝑧) < 1)
11032, 109eqbrtrd 4599 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧(abs ∘ − )0) < 1)
111 cnxmet 22318 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
112 1rp 11668 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
113 rpxr 11672 . . . . . . . . . . . . . . 15 (1 ∈ ℝ+ → 1 ∈ ℝ*)
114112, 113ax-mp 5 . . . . . . . . . . . . . 14 1 ∈ ℝ*
115 elbl3 21948 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
116111, 114, 115mpanl12 713 . . . . . . . . . . . . 13 ((0 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
11726, 25, 116sylancr 693 . . . . . . . . . . . 12 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → (𝑧 ∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑧(abs ∘ − )0) < 1))
118110, 117mpbird 245 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ ((𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) ∧ 𝑧 ≠ 1)) → 𝑧 ∈ (0(ball‘(abs ∘ − ))1))
119118expr 640 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ (𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧))))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
1201193impb 1251 . . . . . . . . 9 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ≠ 1 → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
12124, 120syl5bi 230 . . . . . . . 8 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (¬ 𝑧 ∈ {1} → 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
122121orrd 391 . . . . . . 7 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
123 elun 3714 . . . . . . 7 (𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑧 ∈ {1} ∨ 𝑧 ∈ (0(ball‘(abs ∘ − ))1)))
124122, 123sylibr 222 . . . . . 6 (((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) ∧ 𝑧 ∈ ℂ ∧ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))) → 𝑧 ∈ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
125124rabssdv 3644 . . . . 5 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
12620, 125syl5eqss 3611 . . . 4 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → 𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)))
127 ssundif 4003 . . . 4 (𝑆 ⊆ ({1} ∪ (0(ball‘(abs ∘ − ))1)) ↔ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
128126, 127sylib 206 . . 3 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
12922, 128jca 552 . 2 ((𝑀 ∈ ℝ ∧ 0 ≤ 𝑀) → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
1301, 2, 129syl2anc 690 1 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  {crab 2899  cdif 3536  cun 3537  wss 3539  {csn 4124   class class class wbr 4577  dom cdm 5028  ccom 5032  wf 5786  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  *cxr 9929   < clt 9930  cle 9931  cmin 10117  0cn0 11139  +crp 11664  seqcseq 12618  abscabs 13768  cli 14009  ∞Metcxmt 19498  ballcbl 19500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-xadd 11779  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508
This theorem is referenced by:  abelthlem3  23908  abelthlem6  23911  abelthlem7  23913  abelthlem8  23914  abelthlem9  23915  abelth  23916
  Copyright terms: Public domain W3C validator