MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem4 Structured version   Visualization version   GIF version

Theorem abelthlem4 25021
Description: Lemma for abelth 25028. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
Assertion
Ref Expression
abelthlem4 (𝜑𝐹:𝑆⟶ℂ)
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem4
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12279 . . 3 0 = (ℤ‘0)
2 0zd 11992 . . 3 ((𝜑𝑥𝑆) → 0 ∈ ℤ)
3 fveq2 6669 . . . . . 6 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
4 oveq2 7163 . . . . . 6 (𝑚 = 𝑛 → (𝑥𝑚) = (𝑥𝑛))
53, 4oveq12d 7173 . . . . 5 (𝑚 = 𝑛 → ((𝐴𝑚) · (𝑥𝑚)) = ((𝐴𝑛) · (𝑥𝑛)))
6 eqid 2821 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚))) = (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))
7 ovex 7188 . . . . 5 ((𝐴𝑛) · (𝑥𝑛)) ∈ V
85, 6, 7fvmpt 6767 . . . 4 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
98adantl 484 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))‘𝑛) = ((𝐴𝑛) · (𝑥𝑛)))
10 abelth.1 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
1110adantr 483 . . . . 5 ((𝜑𝑥𝑆) → 𝐴:ℕ0⟶ℂ)
1211ffvelrnda 6850 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
13 abelth.5 . . . . . . . 8 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
1413ssrab3 4056 . . . . . . 7 𝑆 ⊆ ℂ
1514a1i 11 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
1615sselda 3966 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ℂ)
17 expcl 13446 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1816, 17sylan 582 . . . 4 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) ∈ ℂ)
1912, 18mulcld 10660 . . 3 (((𝜑𝑥𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
20 abelth.2 . . . 4 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
21 abelth.3 . . . 4 (𝜑𝑀 ∈ ℝ)
22 abelth.4 . . . 4 (𝜑 → 0 ≤ 𝑀)
2310, 20, 21, 22, 13abelthlem3 25020 . . 3 ((𝜑𝑥𝑆) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((𝐴𝑚) · (𝑥𝑚)))) ∈ dom ⇝ )
241, 2, 9, 19, 23isumcl 15115 . 2 ((𝜑𝑥𝑆) → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) ∈ ℂ)
25 abelth.6 . 2 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
2624, 25fmptd 6877 1 (𝜑𝐹:𝑆⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  wss 3935   class class class wbr 5065  cmpt 5145  dom cdm 5554  wf 6350  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cle 10675  cmin 10869  0cn0 11896  seqcseq 13368  cexp 13428  abscabs 14592  cli 14840  Σcsu 15041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-xadd 12507  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539
This theorem is referenced by:  abelthlem7  25025  abelthlem8  25026  abelthlem9  25027  abelth  25028
  Copyright terms: Public domain W3C validator